Revision 77be15bd262dbbfca3d6babe3f9bafd1f5689bbd (click the page title to view the current version)
CTU4WP@ELAB/index
#Calculus for the WP@ELAB training
mail to main author Vojtech Svoboda
Examples
1D 0th order ODE problem: Constant force
1D 1st order ODE problem: Friction force (\(v\) dependence)
1D 2nd order ODE problem: Free fall (full dynamics)
- Spreadsheets
- Processing (see processing.org, and try it online)
- Python @ JupyterNotebook (see jupyter.org and try it online)
1D 2nd order ODE problem: Pendulum (full dynamics)
- Spreadsheets
- Processing (see processing.org, try it)
- pendulum (basic version)
- pendulum (“advanced” version)
- pendulum with friction
- two pendulums (wiki/Gravity_of_Earth: sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles)
- Octave (see Octave web)
Simulation and experiment
Prague
World pendulum
Final remarks
4th order Runge Kutta method (better alternative to Euler scheme)
Standard CAS functions to solve ODE problems
2D problem, a simple: Horizontal Launch
2D problem, a bit complex: Foucault pendulum
2D problem, a bit complex: Satellite motion
Relevant info
- Gravitational constants at important places from Local Acceleration of Gravity@Wolfram [m/s**2]
- Barcelona 9.799
- Bogota 9.776
- Lisbon 9.814
- Marseille 9.822
- Panama 9.778
- Prague 9.834
- Rio de Janeiro 9.791
- Santiago de Chile (33°27’ S) 9.806 (FP@FCFM: 18.5 m, 100 kg)
- Paris ( 48°52’ N) 9.832 (FP@Pantheon: 68 m, 28 kg)
- wiki/Gravity_of_Earth: Equator ( 0° ) 9.780
- wiki/Gravity_of_Earth: Poles ( +/- 90° ) 9.832
References
- Daniel A. Russell: Oscillation of a Simple Pendulum (accessed March 2, 2020).
- Wikipedia contributors, “Pendulum (mathematics),” Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Pendulum_(mathematics)&oldid=942104313 (accessed March 2, 2020).
- Local Acceleration of Gravity@Wolfram (accessed March 2, 2020).
- Simulate the Motion of the Periodic Swing of a Pendulum @ MathWorks
Authors
- Vojtech Svoboda (Czech Technical University in Prague)
- Pavel Kuriscak (Charles University in Prague)
- Frantisek Lustig (Charles University in Prague)
Any comments, suggestions, ideas highly appreciated. Thanks in advance. Authors.