:'.' . I P P INSTITUTE OF PLASMA PHYSICS
Y OF THE CZECH ACADEMY OF SCIENCES

Sawtooth and its effect ony
plasma processe:

Martin Imrisek, Fabien Jaulmes, Viadimir Weinzettl, Kldra Bogar &j Tomes
15th Student Workshop - Winter school on Plasma :,

FNSPE, CTU in Prague
Maridnskd, 2023

IIIIIIIIIIIIIIIIIIII
OOOOOOOOOOOOOO



Z COMPASS OUTLINE
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Theoretical introduction

Characterisation of sawtooth instability at COMPASS

Effect of sawieeth on edge plasma
e L-H transition
e H-L transition
* Occurence of edge localised mode (ELM)
* Transition from ELMy H-mode to ELM-free H-mode

Summary and next steps
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e Changes temperature profile and magnetic topology «N‘\
. . «pe H 4
in significant volume of plasma, and therefore affects (0 L -
various plasma processes 2 § ¢ A
ac % before collapse
: plasma centre
e Associated with cyclic slow increases and fast drops 3 gitorisollpsi
of the core temperature i RO
time "
e Routinely observed on COMPASS soft X-ray diagnostics

as sawtooth pattern r Fmix
o SXR signal ~ ZefanN/Te + line radiation of heavy impurities

= Limits gradient of pressure and current profiles in plasma core

= Longer sawteeth period shown to trigger neoclassical tearing modes (magnetic islands) below their thresholds —
degradation of confinement
+ Helps to remove impurities from plasma core



SAWTOOTH INSTABILITY

Physical background - 4 phases:
e 1) Ramp-up phase 217 RBg
o gradual increase of temperature and its gradient in plasma core
o high temperature gradient — high conductivity — higher j in plasma core — higher B, — q <1

e 2) Precursor phase " "
o development of internal kink instability (m=1, n=1 mode) q=1 resonant
o displacement of plasma core (can be treated by energy principle) SiNTace

e 3) Sawtooth crash
o magnetic reconnection (typically less than 100us in tokamaks)
o heat pulse from plasma core to the edge

e 4) Post-cursor phase
o oscillations indicating incomplete reconnection
o partial reconnection model

Hot plasma core
L J
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Z COMPASS SAWTOOTH INSTABILITY
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q:g[ﬁfg:"“ t=1151.0 ms t=1152.5 ms
4 phases: Bl Before ST crash UL After ST crash
1. Ramp-up phase -
2. Precursor phase 0.2 0.2
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ENERGY PRINCIPLE AND PORCELLI CRITERIA

* Porcelli heuristic sawtooth crash trigger model - based on energy principle:

» sawtooth crash when the change of potential energy of the kink mode due to its displacement:

8w . _+6W +dW

fast particles

<oW

MHD trapped particles crit

* Triggered by ideal internal kink:
» -0W sufficiently high to rely on the ideal internal
kink mode model and other effects can be neglected

* Resistive effects:
« Sawtooth crash triggered when s >s__..:

ry dq r T /6
LB BLS LY (L. AT/12 71 LS| v1/6 1/2
S1=—— > Sait ~ fBif — | — St/ P

q= %Sﬁ%de L, =n/|dn/ (11‘|
» strong dependence on plasma density,
its gradient and plasma pressure

Sawteeth triggered by No sawteeth

1
Ideal internal | Resistive internal | (tearing modes)
Kink i Kink if 5;>5
i : >
~Wx Ty /2 0 Cppi/rl dw
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« COMPASS: calculations (from METIS) indicate resistive region (often observed also at JET, TEXTOR ...)
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Sawtooth period - time required to reach the criteria for sawtooth
crash, i.e. destabilisation of kink mode

SAWTOOTH DURING OHMIC HEATING

Sawtooth period vs various plasma parameters during density scan (color - W):

When diffusion of current into plasma core is dominant mechanism
(typically large sawtooth):

. . . . . _ /
T, ,,~ resistive diffusion time = uor >~ T >*
When pressure gradient and other effects play an important role in kink
mode stability (<1 necessary, not sufficient): T, ~ 7. [Porcelli, 1996]

Inversion radius r, - without significant change (below precision of the

method)
Inversion radius r, (from SXR tomography)
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Y | P P Z COMPASS SAWTOOTH DURING NBI HEATING

e NBI affects the kink mode stability (8W) via plasma rotation (centrifugal effects) and distribution of

fast particles

e Increased kink frequency indicates increased tor. rotation

e Similar to JET - minimum of sawtooth period at small counter-NBI heating due to competition of
stabilising effects of trapped fast particles and flow shear [Chapman, Phys. plasmas, 2007]
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e H-mode: a regime with better energy confinement - formation of shear flows near
plasma edge tear turbulences — the edge transport barrier

Q
| il
=2
agm g s . . . w
e L-H transition (transition to H-mode) exhibits high correlation with the sawtooth crash &
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e H-L transition (end of H-mode) is mostly avoided within 0.3 of the sawtooth phase and 0.4
ms after sawtooth crash

e The heat pulse from sawtooth crash apparently delays conditions for the H-L transition

e Short “H-modes” (with duration comparable to sawtooth period)
o not fully developed H-mode but shows reduced plasma-wall interaction and formation of
transport barrier
o indication that plasma close to L-H transition
o transition to L-mode often at cca 0.4 of sawtooth phase indicating lower plasma edge
stability near condition close to L-H transition

plasma pressure
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. #19137
* Edge localised mode (ELM) : :
. . . . . . — Ha [a.u.]
* quasi-periodic relaxation of a transport barrier formed in H-mode 1} xR (core) fa.u.]
* observed as peaks in Da signal - increased plasma-wall interaction 0.8

« results in high heat loads on tokamak vessel 0:6
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* ELMs less likely to happen at 0.2 of sawtooth phase or 0.4 ms after the
sawtooth crash

« corresponds to the delay of the L-H
sawtooth crash

* heat pulse can increase the edge pressure gradient so that it shifts the edge 350 —
plasma into the stable region for type-Ill ELMs 506 i
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e Increasing plasma heating — L-H transition — ELMs (small) — transition to
ELM-free H-mode (unstable) — ELMs (large)

e ELM-free regime (if uncontrolled) can lead to a disruption - strong cooling via
radiation of accumulated impurities 1t e et

i o et Pt [MWI

0.5} -By

e Transition to ELM-free H-mode is not so strongly correlated with the
sawtooth crashes as it is in the case of the L-H transition, but still visible
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e Group of last ELMs before ELM-free H-mode occurring in the middle of
sawtooth phase - indicating lower plasma edge stability

Last ELM during |
H-mode with respect
to the sawtooth crash

counts
S
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SUMMARY

e Sawtooth instability at COMPASS
o Sawtooth period T¢,,~ 7= and T, < 7, possibly negligible effect of the diffusion of the plasma current in the
plasma core in comparison with other effects (pressure gradient vs. steepness of the current profile)
o calculations based on METIS simulations indicate a resistive regime of the internal kink mode
o NBI: stabilisation of kink mode in co-NBI, destabilisation in counter-NBI (similar behaviour at JET)

e Effect of sawtooth instability - strong influence on plasma edge processes
o triggers vast majority of detected L-H transitions (0.4 ms)
o ELMs less likely to happen after the sawtooth crash (0.4 ms)
o can trigger transition to ELM-free H-mode
o H-L transition is most probable in the middle of the sawtooth cycle

e Next:

o Plasma edge stability (from simulations) vs sawtooth and ELM cycle
o Analysis of last campaigns with additional heating power
o Change of poloidal rotation during sawtooth cycle
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Q: The results shown in Figs. 6.13 - 6.16 seem to indicate that the sawtooth period is actually more probably sensitive to TE or W than to PNBI. In this case, what could
explain the observed minimum of Tsaw for NBI in counter-current regime?
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