Investigation of pedestal stability in edge plasma region of the COMPASS tokamak

\author{

Miroslav Sos ${ }^{1,2, *}$, Mate Peterka ${ }^{1,3}$, Samuli Saarelma ${ }^{4}$, Per Boom ${ }^{1}$, Petra Bilkova ${ }^{1}$, Jan Heck ${ }^{1,2}$, Tomas Markovic ${ }^{1,3}$, Ondrej Grover ${ }^{1,2}$, Jakub Seidl ${ }^{1}$, Ondrej Kovanda ${ }^{1}$, Vladimir Weinzettl ${ }^{1}$, Martin Heron ${ }^{1}$
 ${ }^{1}$ Institute of Plasma Physics of the CAS, v.v.i., Ka Slovankou 1782/3, CZ-180 00 Prague 8, Czech Republic
 ${ }^{2}$ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, CZ-115 19 Prague 1, Czech Republic
 ${ }^{3}$ Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
 ${ }^{4}$ CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
 contact: sos@ipp.cas.cz
 COMPASS TOKAMAK
 - medium size tokamak: $\boldsymbol{R}=0.56 \mathrm{~m}, a=0.18 \mathrm{~m}$ - NBI heating $-2 \times 300 \mathrm{~kW}$
 - $\boldsymbol{B}_{\boldsymbol{T}}=0.8-2.1 \mathrm{~T}, \boldsymbol{\kappa}=1.6, I_{\mathrm{p}} \leq 400 \mathrm{kA}$
 divertor plasma with ITER-like cross-section
 THOMSON SCATTERING DIAGNOSTICS (TS ON THE COMPASS TOKAMAK
 $4 \mathrm{Nd}:$ YAG lasers - each $\lambda=1064 \mathrm{~nm}, \mathrm{E} \approx 1.5 \mathrm{~J}, 30 \mathrm{~Hz}$,
 FWHM 7ns pulse
 | | Core TS | Edge TS |
| :---: | :---: | :---: |
| Field of view | $-15-213 \mathrm{~mm}$ | $215-322 \mathrm{~mm}$ |
| Spatial points | 24 | 30 |
| Resolution | $9-12 \mathrm{~mm}$ | $3.6-3.8 \mathrm{~mm}$ |

}
 discharges during ELM mitigation by RMP campaign revealed an outlaying result located in the PB unstable region. This case was further analysed in order to understand its physical aspects, which leads to establishing PB unstable case. Most significant impacts seems to be related to β_{N} evolution and strong MHD activity.
SCENARIO OVERVIEW AND THE METHOD OF PEDESTAL STABILITY ANALYSIS

- Several COMPASS discharges from same campaign analysed
$I_{\mathrm{p}}=220 \mathrm{kA}, \boldsymbol{B}_{\mathrm{T}}=1.5 \mathrm{~T}, \boldsymbol{n}_{\mathrm{e}} \approx 4 \cdot 10^{19} \mathrm{~m}^{-3}, \boldsymbol{q}_{95} \approx 3.7$, two iBIs $\approx 300-350 \mathrm{~kW}$)
- Equilibrium code HELENA + MHD codes ELITE/MISHKA => the pedestal stability
- PB boundary given by $\boldsymbol{Y}_{\text {crit }}$ (usually 3% of Alfén frequency)
- Stability analysis shows consistent results from variety of COMPASS discharges at different parameters and ELM phase
- PB boundary and the operational space ($\boldsymbol{\alpha}_{\text {max }}, j_{\text {edge }}$) well mapped

EXTRAORDINARY CASE ON THE PB BOUNDARY

- One of a kind outlying case observed over the PB boundary
- $\boldsymbol{P}_{\text {WEI }} \approx 700 \mathrm{~kW}$, low $\boldsymbol{\beta}_{\mathrm{N}}=1.17$, last 15% of ELM cycle

INTER-ELM EVOLUTION OF PEDESTAL

- Evolution of PB boundary with reference to ELM cycle phase
- When approaching ELM both pressure and edge current gradients are increasing (from green to blue)
- Then $\boldsymbol{\beta}_{\mathrm{N}}$ drops, PB boundary is shifted $=>$ becomes unstable

INPUTS FOR THE STABILITY ANALYSIS

- T_{e} and n_{e} profiles <= TS with 120 Hz resolution
- Plasma boundary $+\boldsymbol{\Psi}_{\mathrm{N}}$ (approx.) <= EFIT calculation - Pedestal pressure gradient mostly given by $\boldsymbol{T}_{\mathrm{e}}$ gradient

ψ_{N} [-]

EFFECT OF SEPARATRIX TEMPERATURE

- EFIT does not provide proper sep. position $=>T_{e}$ profile shifted to match given $\boldsymbol{T}_{\mathrm{e}, \text { sep }}$ (density shifted accordingly)
- Scan of $T_{\text {essen }}(30-70 \mathrm{eV})$ => stabilization by lower $T_{\text {e,sep }}$
- Reasonable value of $T_{\text {e,sep }}=50 \mathrm{eV}$ was chosen for all cases

IMPACT OF HIGHER β_{N} ON THE PB BOUNDARY

- Model situation for exp. case \#18254 \Rightarrow increased $\boldsymbol{\beta}_{\boldsymbol{N}}$ to match \#18252
In the second case \#18252 EFIT boundary used
- Significant shift of PB boundary - Position of experimental point almost unchanged
Increase of β_{N}
=> not only responsible for PB bound. behaviour

STRONG MHD ACTIVITY

- Well observed MHD activity (magnetic island) during \#18254 on Mirnov coils
- $\boldsymbol{T}_{\mathrm{e}}$ profile (TS) flattened at $\boldsymbol{\Psi}_{\mathrm{N}} \approx 0.7$ (where $\boldsymbol{q} \approx 2$) 200 \#1825 2-solid lines \#1825 4-dashed lines

\square

This work has been carried out within the framework of the
European union
European structural an EUROfusion Consortium and has received funding from the Euratom
 research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission The work was co-funded by MEYS project numbers 8D15001, LM 2015045 was co-fund and CZ.02.1.01/0.0/0.0/16 019/0000768

