

Investigation of pedestal stability in edge plasma region of the COMPASS tokamak

<u>Miroslav Sos^{1,2,*}, Matej Peterka^{1,3}, Samuli Saarelma⁴, Petr Bohm¹, Petra Bilkova¹, Jan Hecko^{1,2}, Tomas</u> Markovic^{1,3}, Ondrej Grover^{1,2}, Jakub Seidl¹, Ondrej Kovanda¹, Vladimir Weinzettl¹, Martin Hron¹ ¹Institute of Plasma Physics of the CAS, v.v.i., Za Slovankou 1782/3, CZ-180 00 Prague 8, Czech Republic ²Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, CZ-115 19 Prague 1, Czech Republic ³Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

⁴CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK

* contact: sos @ipp.cas.cz

COMPASS TOKAMAK	THOMSON SCATTERING DIAGNOSTICS (TS)		Core TS	Edge TS
medium size tokamak: <i>R</i> = 0.56 m, <i>a</i> = 0.18 m NBI heating – 2 × 300 kW	ON THE COMPASS TOKAMAK	Field of view	-15 – 213 mm	215 – 322 mm
■ B_T = 0.8–2.1 T, κ = 1.6, I_p ≤ 400 kA ■ H-mode both Ohmic and NBI assisted	4 Nd:YAG lasers – each λ = 1064 nm, E ≈ 1.5 J, 30 Hz,	Spatial points	24	30
 divertor plasma with ITER-like cross-section 	FWHM 7ns pulse	Resolution	9 – 12 mm	3.6 – 3.8 mm

For most cases pedestal stability analysis of COMPASS tokamak discharges shows peeling-ballooning stable regime. Initial idea of studying higher triangularity

discharges during ELM mitigation by RMP campaign revealed an outlaying result located in the PB unstable region. This case was further analysed in order to understand its physical aspects, which leads to establishing PB unstable case. Most significant impacts seems to be related to β_N evolution and strong MHD activity.

EXTRAORDINARY CASE ON THE PB BOUNDARY

- One of a kind outlying case observed over the PB boundary
- *P*_{NBI} ≈ 700kW, low β_N = 1.17, last 15% of ELM cycle

INTER-ELM EVOLUTION OF PEDESTAL

 ϕ_{ELM} β_{N}

28.8%, 1.24

51.8%, 1.20

67.5%, 1.31

75.3%, 1.29

86.8%, 1.17

1.5

1.2

1.0-

~ 0.8·

0.6

0.4

- Evolution of PB boundary with reference to ELM cycle phase
- When approaching ELM both pressure and edge current gradients are increasing (from green to blue)
- Then β_N drops, PB boundary is shifted => becomes unstable

solid: $\gamma_c = 0.03\omega_A$, dashed: $\gamma_c = 0.005\omega_A$

EFFECT OF SEPARATRIX TEMPERATURE

- EFIT does not provide proper sep. position $\Rightarrow T_e$ profile shifted to match given $T_{e,sep}$ (density shifted accordingly)
- Scan of $T_{e,sep}$ (30 70 eV) => stabilization by lower $T_{e,sep}$
- Reasonable value of $T_{e,sep} = 50eV$ was chosen for all cases

IMPACT OF HIGHER β_N ON THE PB BOUNDARY

- => increased β_N to match #18252

STRONG MHD ACTIVITY

3.0

2.5

 α_{\max}

2.0

- Well observed MHD activity (magnetic island) during #18254 on Mirnov coils
- T_e profile (TS) <u>flattened</u> at $\psi_N \approx 0.7$ (where $q \approx 2$)

#18254

3.5

SUMMARY

- First promising results were obtained using pedestal stability analysis
- Several cases within one experimental campaign show comparable results PB stable
- Extraordinary case on the PB boundary => low β_N does not clarify => thorough analysis required to understand reasons and consequences of this case

 α_{\max}

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The work was co-funded by MEYS project numbers 8D15001, LM2015045 CZ.02.1.01/0.0/0.0/16_019/0000768 and GACR Standard and Project 19-15229S.

