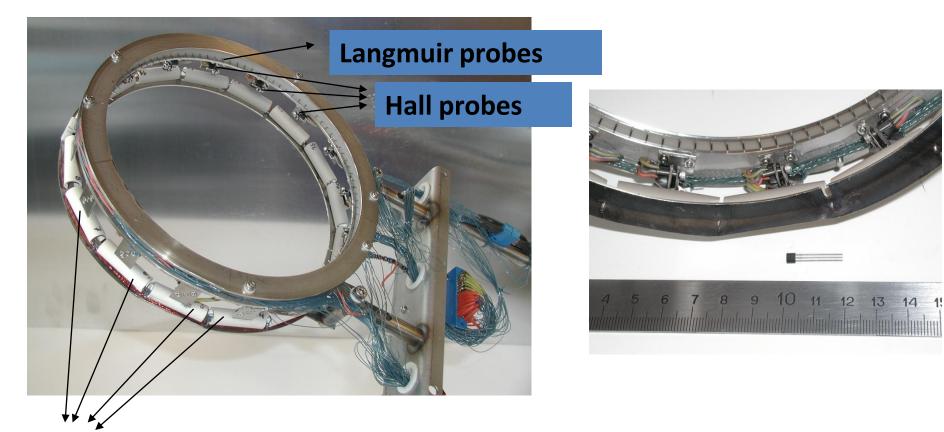
Reinstallation of modified 'SK ring' on GOLEM tokamak

M. Markovič, I. Ďuran, ...

Motivation:

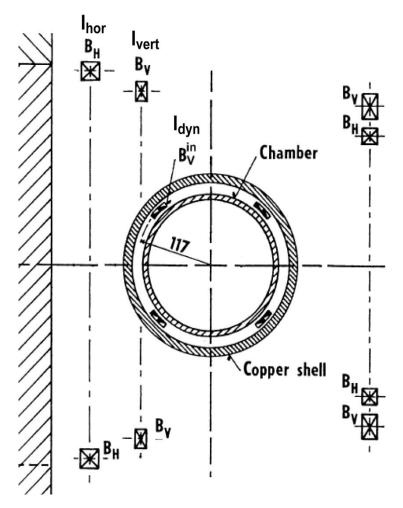

- Test of new high temperature Hall sensors from PUT, Poznan, Poland (link to EFDA WP2010, possibly WP2011; certain ITER and reactor relevance)
- Evaluation of plasma position on GOLEM.
- Turbulence studies.
- Previous experience and hardware exists.

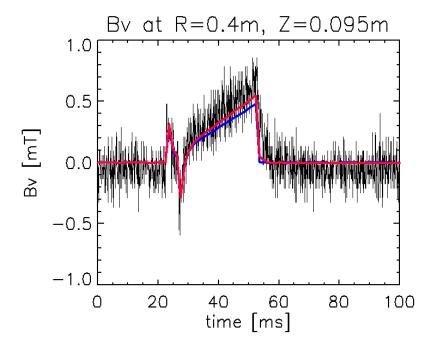
Full poloidal ring of:

16 (8) Hall sensors for plasma position

16 coils for MHD studies

96 Langmuir probes for electrostatic turb.


Pick-up coils Two issues:


mystery of 2x higher magnetic field and, not satisfactory rigidity of ring support structure leading to vibrations affecting mainly coils signals.

CASTOR external windings with significant currents:

- **1.** Toroidal field coils: dBt/dt routinely measured well compensated.
- 2. Primary winding: dlprim/dt routinely measured, optionally, lprim can be measured on $0.2m\Omega$ resistor which is included in the circuit.
- **3. Feedback windings:** routinely measured: **Idyn**, **Ivert**, **Ihor**.
- 4. Tokamak chamber: Iliner=Uloop/Rliner, Rliner=5.7m Ω , Uloop routinely measured, eddy currents

Feedback windings

Bh at R=0.4m, Z=0.095m

6

1

4

1

0

20

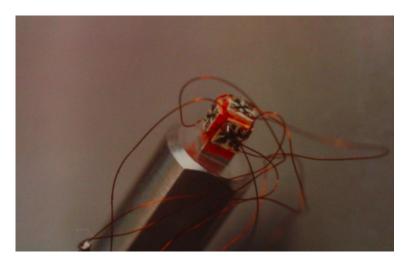
40

60

80

100

time [ms]


Good agreement

Twice as large magnetic field is measured than expected - not understood yet

Present status and plans

Hall sensors:

- Negotiations with Prof. Oszwaldowski (PUT, Poznan, Poland) started.
 - size cube with a=4-5 mm (smaller possible at higher price)
 - frequency response req. at least 5-10 kHz
 - price about 500 Euro(per probe or sensor?) (Visegrad fund?)

Support structure:

- Initial contact with VACUUM Praha.
 - modifications of present SS difficult (coils can not be dismountled).
 - •linked to the final size and shape of HS.
 - keep coils and Langmuir probes?

PARAMETER/VALUE	ETHS	HGT-3010	HGT-3030
Working temperature range	e, Δ <i>T</i> –270 °C t	o +300 °C, -	-40 °C to +100 °C
Working magnetic field rang	ge, Δ <i>B</i>	0-5 T	
Input/output resistance, R	10 Ω	1 Ω	2 Ω
Nominal driving current, I_n	5	0 mA	100 mA
Maximum driving current, I_n	nax 10	00 mA	300 mA
Magnetic field sensitivity, S	100 mV/T	(5–10) mV/T	(60–100) mV/T
Temperature coefficient			
of resistance, $ \alpha $	< 0.10 %/°C	0.18 %/°C	0.15 %/°C
Temperature coefficient of			
magnetic sensitivity, 6	< 0.04 %/°C	< 0.005 %/°C	< 0.04 %/°C
price (1D or 3D)	cca 500 Euro	\$334 (\$774	*) \$427

*) in cryogenic version (with working temperature range -258 °C to +100 °C)