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Building a Computer Model

To get solution of a physical problem using computer simulation
requires performing this process:

e Problem formulation

e Building a model

e Solving the model

e Comparison of the model and experimental or
theoretical results
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Monte Carlo Method

Solving a problem by Monte carlo method consists from these
steps:

e Problem analysis and model creation

¢ Random quantity generation

e Random quantity transformation

e Previous 2 steps repeating and statistical evaluation of
the results
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Random Numbers Generators

Random numbers can be generated through several ways. In
Monte carlo methods were or are used:

e Physical generators

¢ Random numbers tables

e Calculated random numbers
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Pseudo-random Numbers Generators 1

Good generator should have these features:

e Long period

e Uniform distribution of the numbers
e Numbers are not correlated

e High speed of evaluation
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Pseudo-random Numbers Generators 2

General Formula

ni =f(ni_g,Ni—2,...,Ni_j) 1)
Linear Congruential Generators (LCG)

ni = (an;_1 + b)mod(m) v
Lagged Fibonacci Generators (LFG)

N = (anj_1 + bnj_» + ...)mod(m) 3)
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Random Angles Generation
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Random Angles Generation
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Simulation Set-up

Programming language for the 3D simulation - Compaq
Visual Fortran Professional Edition 6.6.C

The spatial unlimited target plasma simulated through a
cube with periodic boundary conditions

The side of the cube 10>, 10° nuclei of deuterium in target
The beam of 10* deuterium particles with initial velocity
108 kms—1

Maxwellian velocity distribution with temperature 1 keV
Time step 10712 s

Condition for the realization of a collision - empirically set
the distance of Ape/100

Collisions in separated Maxwellians neglected,
straightforward motion, temperature calculation
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Simulation Results

o After performance of 100 time steps - end of interactions

e Agreement with the theory - kinetic energy of the beam
transformed to the thermal energy both beam and target
particles

e The beam heated up to 3 keV, the target to 2 keV
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Final beam velocities distribution
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Beam - target model

External magnetic field

A few experimental, theoretical, and computer results
More interactions - elastic, ...

Better collision and boundary conditions



