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Building a Computer Model

To get solution of a physical problem using computer simulation
requires performing this process:

• Problem formulation
• Building a model
• Solving the model
• Comparison of the model and experimental or

theoretical results
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Monte Carlo Method

Solving a problem by Monte carlo method consists from these
steps:

• Problem analysis and model creation
• Random quantity generation
• Random quantity transformation
• Previous 2 steps repeating and statistical evaluation of

the results
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Random Numbers Generators

Random numbers can be generated through several ways. In
Monte carlo methods were or are used:

• Physical generators
• Random numbers tables
• Calculated random numbers
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Pseudo-random Numbers Generators 1

Good generator should have these features:

• Long period
• Uniform distribution of the numbers
• Numbers are not correlated
• High speed of evaluation
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Pseudo-random Numbers Generators 2

General Formula

ni = f (ni−1, ni−2, ..., ni−j) (1)

Linear Congruential Generators (LCG)

ni = (ani−1 + b)mod(m) (2)

Lagged Fibonacci Generators (LFG)

ni = (ani−1 + bni−2 + ...)mod(m) (3)
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Inverse Matrix

I =





cos θ cos ϕ − sin ϕ sin θ cos ϕ
cos θ sin ϕ cos ϕ sin θ sin ϕ
− sin θ 0 cos θ



 (6)



Random Angles Generation

(0, 0, u)t Rotation by Φ and Θ

sin Θ =
2δ

1 + δ2 (7)

1 − cos Θ =
2δ2

1 + δ2 (8)



Random Angles Generation

(0, 0, u)t Rotation by Φ and Θ

sin Θ =
2δ

1 + δ2 (7)

1 − cos Θ =
2δ2

1 + δ2 (8)

δ = tan Θ/2 (9)

σ2 =
e2

αe2
βnLλ

8πǫ2
0m2

αβu3
∆t (10)
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v t+∆t
α = v t

α +
mαβ

mα
∆u (13)

v t+∆t
β = v t

β − mαβ

mβ
∆u (14)
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Simulation Set-up

• Programming language for the 3D simulation - Compaq
Visual Fortran Professional Edition 6.6.C

• The spatial unlimited target plasma simulated through a
cube with periodic boundary conditions

• The side of the cube 10−5, 105 nuclei of deuterium in target

• The beam of 104 deuterium particles with initial velocity
103 kms−1

• Maxwellian velocity distribution with temperature 1 keV

• Time step 10−12 s

• Condition for the realization of a collision - empirically set
the distance of λDe/100

• Collisions in separated Maxwellians neglected,
straightforward motion, temperature calculation
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Simulation Results

• After performance of 100 time steps - end of interactions

• Agreement with the theory - kinetic energy of the beam
transformed to the thermal energy both beam and target
particles

• The beam heated up to 3 keV, the target to 2 keV
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Initial beam velocities distribution



Final beam velocities distribution
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Diploma Thesis

• Beam - target model

• External magnetic field

• A few experimental, theoretical, and computer results

• More interactions - elastic, ...

• Better collision and boundary conditions


