
Introduction to Scientific Computing
(Lecture 10: Numerical schemes for integration of ODEs)

Bojana Rosić
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Solving ODE

In last lecture we studied the numerical evaluation of integral∫ b

a

f (t)dt =
N∑

n=1

fnwn

in which fn := f (tn) is the value of function at given points tn and wn are cor-
responding weights. This knowledge further can be used to solve the first order
differential equation

ẋ(t) = f (t, x(t)) for t ∈ [0,T ]

given initial condition
x0 = x(0).
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Solving ODE

The solution is given as

x(T ) = x0 +

∫ T

0

f (x , t)dt = x(0) +
N−1∑
i=0

∫ ti+1

ti

f (x , t)dt

Having that tn := t0 + n · h one may further write

x(t1) = x(0) +

∫ t1

t0

f (x , t)dt, x(t2) = x(t1) +

∫ t2

t1

f (x , t)dt, ...

This then delivers the recursive formula

x(tn+1) = x(tn) +

∫ tn+1

tn

f (x , t)dt ≈ x(tn) +

∫ tn+1

tn

Pm(t)dt
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Solving ODE

Depending on choice of polynomial degree m and interpolation points ti , i =
1, ...,m + 1, the previous recursive scheme will obtain different form. Thus, we may
distinguish:

one step methods

explicit: for interpolation is used one known point (initial value or value from
the previous time step)
implicit: for interpolation is used unknown point or both known and unknown
points (state at the begining and at the end of the current step)

multistep methods: use known points from the presvious steps (explicit) or
use the unknown points (implicit) for the interpolation
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Explicit (forward) Euler method

This method is based on the piecewise constant interpolation in which

P0(t) = f (t), a0 = f (t)

To determine a0 we use one interpolation point which denotes the beginning of time
step, i.e.

a0 = f (xn, tn) := fn

which gives us recursive formula (left-rectungle rule)

xn+1 = xn +

∫ tn+1

tn

a0dt = xn + fnh

with h := (tn+1 − tn).
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Mathematical formulation

The idea of explicit Euler method emerges from the Taylor expansion of the solution
x(t + h) around x(t):

x(t + h) ≈
m∑

n=0

hi

i !
x (i)(t).

where only the first order terms are taken into consideration such that

x(t + h) ≈ x(t) + ẋ |t(t + h − t) = x(t) + f (x , t)h

i.e. if t = nh
xn+1 ≈ xn + f (xn, tn)h

holds.
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Mathematical formulation

Note that in

x(t + h) ≈ x(t) + ẋ(t)(t + h − t) = x(t) + f (x , t)h

one may write

ẋ(t) = f (x , t) ≈ x(t + h)− x(t)

t + h − t

which is nothing else but approximation of slope at point t, i.e. forward difference.
Thus, the name forward Euler method.

Bojana Rosić (WiRe) Introduction to Scientific Computing February 1, 2017 7 / 80



Pros & Cons

Pros:

simple numerical scheme

easy implementation

Cons:

to get accurate result one requires quite small step size

costly method

sometimes does not converge to the solution or requires step size restriction
(ODE 2)
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Explicit Euler method h = 1
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Explicit Euler method h = 0.5
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Implicit (backward) Euler method

The method is also based on the piecewise constant interpolation (P0(t)) but this
time the constant a0 is obtained from the interpolating condition

a0 = f (xn+1, tn+1)

leading to
xn+1 = xn + f (xn+1, tn+1)h, n = 0, 1, ..

Note that this is implicit scheme as the value of xn+1 is unknown.
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Mathematical formulation

The Taylor expansion reads

x(t) ≈ x(t + h) + ẋ |t+h(t − (t + h)) + h.o.t

i.e.
x(t) ≈ x(t + h)− hf (x(t + h), t + h)

Hence,
xn+1 = xn + f (xn+1, tn+1)h, n = 0, 1, ..

and

ẋ |t+h ≈
x(t)− x(t + h)

t − (t + h)

which is backward difference. Hence, the method is also known as backward Euler
method.
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Implicit Euler method h = 1
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Explicit vs Implicit Euler method
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Pros & Cons

Pros:

simple numerical scheme

easy implementation

Cons:

one requires linear and nonlinear solvers

costly method

not enough accurate
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Trapezodial rule

Belongs also to the one step family, however this time is used linear interpolation
by P1(t) = a0 + a1t. The coefficients a0 are obtained by solving

a0 + a1tn = f (xn, tn), a0 + a1tn+1 = f (xn+1, tn+1)

which results in the area of trapezoid∫ T

0

f (t)dt ≈
N−1∑
n=1

h

2
f (tn) + f (tn+1))

Hence, the trapezoidal scheme for solving ODE reads

xn+1 = xn +
h

2
(f (tn, xn) + f (tn+1, xn+1))

and as xn+1 appears on both left and righ hand side, the method is known to be
implicit.
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Trapezoidal rule
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Trapezoidal rule
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Midpoint rule

The method is based on the piecewise constant interpolation in which a0 = f (tn +
0.5, x(tn + 0.5h)) such that

xn+1 = xn + h(f (tn +
h

2
, x(tn +

h

2
))

holds. However, we cannot use this equation as x(tn+ h
2 ) is not known. To compute

this value one may use explicit Euler method (predictor method):

x(tn +
h

2
) = x(tn) +

h

2
f (tn, xn)

which leads us to the explicit formula

xn+1 = xn + hf (tn +
h

2
, x(tn) +

h

2
f (tn, xn))
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Explicit midpoint rule
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Implicit midpoint rule

The implicit version can be obtained by approximating the value

x(tn +
h

2
) =

1

2
(xn + xn+1)

as a midpoint of line segment. This then leads to

xn+1 = xn + hf (tn +
h

2
,

1

2
(xn + xn+1))
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Overview

Gathering previous numerical methods one has

explicit Euler method xn+1 = xn + hf (tn, xn)

implicit Euler method xn+1 = xn + hf (tn+1, xn+1)

trapezoidal rule xn+1 = xn + h
2 (f (tn, xn) + f (tn+1, xn+1))

explicit midpoint rule xn+1 = xn + hf (tn + h
2 , x(tn) + h

2 f (tn, xn))

implicit midpoint rule xn+1 = xn + hf (tn + h
2 ,

1
2 (xn + xn+1))

Bojana Rosić (WiRe) Introduction to Scientific Computing February 1, 2017 22 / 80



Multistep methods

They are similar to one step methods. The only difference is that the interpolation
is performed over several steps, and thus the name ”multistep method”. In other
words,

x(tn+1) = x(tn−j) +

∫ tn+1

tn−j

f (t, x(t))dt ≈ x(tn−j)

∫ tn

tn−j

Pm(t)dt

and f is integrated on the time interval from tn−j up to tn+1 where j > 0 and j ≤ k,
and polynomial Pm is interpolated given set of interpolation points (x(ti ), ti ), i =
1, ...,m + 1.
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Adams-Bashforth formulas

They are simple extension of explicit one step formulas. Similarly to the explicit
one step method, the integration starts from the last known solution. However, the
interpolation is done over several existing steps. As an example let us observe the
method obtained by linear interpolation P1(t) = a0 + a1t in which coefficients are
obtained from the interpolating conditions (solutions from the last two steps)

a1tn + a0 = fn

and
a1tn−1 + a0 = fn−1.

After solving the previous system and integrating polynomial, one obtains

xn+1 = xn +
3

2
hfn −

1

2
hfn−1

which represents the difference equation of second order.
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Adams-Bashforth formulas

Taking different number of interpolation points and j = 0 in general formula we
get the Adams-Bashforth formulas (1883):

k = 1 : xn+1 = xn + hfn,
k = 2 : xn+1 = xn + h

(
3
2 fn − 1

2 fn−1

)
,

k = 3 : xn+1 = xn + h
(

23
12 fn − 16

12 fn−1 + 5
12 fn−2

)
,

k = 4 : xn+1 = xn + h
(

55
24 fn − 59

24 fn−1 + 37
24 fn−2 − 9

24 fn−3

)
Note: The first method is explicit Euler rule (one step method obtained by piecewise
interpolation). Other methods are multistep as they need more than one starting
value. In case when these values are not given, they can be computed with a
one-step method.
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Nyström formulas

Generalasing AB methods, one may obtain Nyström formulas by starting integration
from xn−1 and interpolating over the last k known steps

k = 2 : xn+1 = xn−1 + 2hfn,
k = 3 : xn+1 = xn−1 + h

(
7
3 fn − 2

3 fn−1 + 1
3 fn−2

)
,

k = 4 : xn+1 = xn + h
(

8
3 fn − 5

3 fn−1 + 4
3 fn−2 − 1

3 fn−3

)
Note: For k = 2 we get the explicit midpoint rule
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Implicit multistep methods

If interpolation in the multistep method is done such that the interpolating condi-
tions also include the unknown point tn+1, f (tn+1) then such methods are known
as the implicit multistep methods. Typical example are Adams+Moulton methods

k = 1 : xn+1 = xn +
h

2
(fn+1 + fn),

k = 2 : xn+1 = xn + h
(

5
12 fn+1 + 8

12 fn − 1
12 fn−1

)
,

k = 3 : xn+1 = xn +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2)
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General form

Methods we have just introduced are linear multistep methods of the form (only
linear combination of x ’s and f ’s)

k∑
l=0

alxn+l = h
k∑

l=0

bl f (tn+l , xn+l)

i.e. the linear difference or recursive equations. Observing the numerical scheme as
a linear difference equation one may study Lyapunov stability. On the other hand
observing the numerical scheme as recursive equation one may study the accuracy
of the scheme and its convergence (Banach fixed point theorem).
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Accuracy

To measure accuracy of chosen numerical scheme, one may define local or global
error. The local error is defined as

εloc = xa(tn+k)− x(tn+k)

in which the value xa(tn+k) is the exact (e.g. algebraic) solution and x(tn+k) is the
value obtained by LMM numerical scheme starting from the exact value (i.e. the
interpolating points are exact). For example, the local error of the first step would
be the difference between the exact solution obtained from the exact initial value
and numerical solution obtained from the exact initial value too. The numerical
solution in one step obtained via LMM starting from the exact values reads:

akx(tn+k) +
k−1∑
j=0

ajxa(tn+j) = h
k∑

j=0

bj f (tn+j , xa(tn+j))

Note: the exact solution appears in all the terms besides the first one.
This means that we predict next time step by assuming that all the initial
conditions and all the tangents are exact.

Bojana Rosić (WiRe) Introduction to Scientific Computing February 1, 2017 29 / 80



Accuracy

Hence, the local error reads

εloc = xa(tn+k)− x(tn+k)

εloc = xa(tn+k) + a−1
k

k−1∑
j=0

ajxa(tn+j)− h
k∑

j=0

bj f (tn+j , xa(tn+j))


Multiply both sides by ak to obtain

akεloc = akxa(tn+k) +
k−1∑
j=0

ajxa(tn+j)− h
k∑

j=0

bj f (tn+j , xa(tn+j))

which is then

akεloc =
k∑

j=0

ajxa(tn+j)− h
k∑

j=0

bj f (tn+j , xa(tn+j))
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Accuracy

The value xa(tn+j) can be obtained from the Taylor expansion around the point in
time tn such that

xa(tn+j) = xa(tn) + x ′a(tn)(tn+j − tn) +
x ′′a (tn)

2
(tn+j − tn)2 + h.o.t.

and

x ′a(tn+j) = x ′a(tn) + x ′′a (tn)(tn+j − tn) +
x ′′′a (tn)

2
(tn+j − tn)2 + h.o.t.

Note that the difference

tn+j − tn = (n + j)h − nh = jh
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Accuracy

Hence,

akεloc =
k∑

j=0

ajxa(tn+j)− h
k∑

j=0

bj f (tn+j , xa(tn+j))

=
k∑

j=0

ajxa(tn+j)− h
k∑

j=0

bjx
′
a(tn+j)

=
k∑

j=0

aj

[
xa(tn) + x ′a(tn)(jh) +

x ′′a (tn)

2
(jh)2 + h.o.t.

]

−h
k∑

j=0

bj

[
x ′a(tn) + x ′′a (tn)(jh) +

x ′′′a (tn)

2
(jh)2 + h.o.t.

]
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Accuracy

akεloc =

 k∑
j=0

aj

 xa(tn) + h

 k∑
j=0

(jaj − bj)

 x ′a(tn)

+h2

 k∑
j=0

(
j2

2
aj − jbj)

 x ′′a (tn) + · · ·+

+ · · ·+ hq+1

[
k∑

j=0

(
jq+1

(q + 1)!
aj −

jq

q!
bj)

 x (q+1)
a (tn) +O(hq+2)
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Consistency

We would like that the local error reduces with the time step size h. This condition
is known as consistency. The linear multistep is consistent if

lim
h→0
‖εloc

h
‖ = 0

The scheme is consistent of order p if

max‖εloc
h
‖ ≤ Chp
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Consistency

For linear multistep method this means that the term

εloc
h

=
1

h

 k∑
j=0

aj

 xa(tn) +

 k∑
j=0

(jaj − bj)

 x ′a(tn)

+h

 k∑
j=0

(
j2

2
aj − jbj)

 x ′′a (tn) + · · ·+

+ · · ·+ hq

[
k∑

j=0

(
jq+1

(q + 1)!
aj −

jq

q!
bj)

 x (q+1)
a (tn) +O(hq+1)

should go to zero when h→ 0
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Consistency

Hence, the method is consistent if

k∑
j=0

aj = 0,
k∑

j=0

(jaj − bj) = 0

and
k∑

j=0

(
jq

(q)!
aj −

jq−1

(q − 1)!
bj) = 0, q = 2, · · · p
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Consistency of Adams-Bashforth method

Having

xn+2 = xn+1 +
h

2
(−f (tn, xn) + 3f (tn+1, xn+1))

where
a0 = 0, a1 = −1, a2 = 1

and
b0 = −0.5, b1 = 1.5, b2 = 0

one may check if the following conditions hold

k∑
j=0

aj = 0,
k∑

j=0

(jaj − bj) = 0
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Consistency of Adams-Bashforth method

k∑
j=0

aj = 0− 1 + 1 ≡ 0

k∑
j=0

(jaj − bj) = 0 · a0 − b0 + a1 − b1 + 2a2 − b2

k∑
j=0

(jaj − bj) = 0.5− 1− 1.5 + 2− 0 ≡ 0

Hence, the method is consistent.
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Consistency order of Adams-Bashforth method

Let us check now

k∑
j=0

(
jq

(q)!
aj −

jq−1

(q − 1)!
bj) = 0, q = 2, · · · p

k∑
j=0

(
j2

(2)!
aj −

j2−1

(2− 1)!
bj) = −0.5− 1.5 + 2− 0 ≡ 0

k∑
j=0

(
j3

(3)!
aj −

j3−1

(3− 1)!
bj) = 9/12 6= 0

Hence, the order is p = 2.
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Consistency of explicit Euler

Let us integrate the ODE ẋ = t in time interval [0, 1] by taking whole interval as
one step. Thus, one has

x1 = x0 + f0h = 0 + 0 · 1 = 0, xa(t) = 0.5t2
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1
Derivative−−slope f

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2
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0.4

0.5

Solution x

a) error in slope b) error in solution (local error) = 0.5
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Consistency of explicit Euler

or let us cut the time interval into several substeps and in each step always start
from the exact solution
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Solution x

a) error in slope b) error in solution (local error)≈ 0.02
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Is consistency enough?

In order to see this, let us compute numerically the solution x1 in one step starting
from x0 (which is analytical (exact)). Then, let us compute the next step starting
from the last numerical solution x1 to obtain x2 etc. Finally, let us compute the total
error between full numerical solution and analytical one over some time interval.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Derivative−−slope f
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0.4

0.5

Solution x

a) error in slope a b) error in solution (global error)≈ 0.1

asame as before as f does not depend on x
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Is consistency enough?

By comparing both of figures, we may see that the full numerical solution gives us
bigger error (This is to expect as local error gets integrated over time. Also, the
left picture is not realistic as usually one does not know the exact solution).
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Solution x

a) local error ≈ 0.02 b) global error ≈ 0.1
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Is consistency enough?

To reduce the error, one has to reduce the time step size. Hence, let us make the
step size 100 times smaller, then we get
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a) error in slope very small b) error in solution very small
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But, the initial condition is...

maybe not exact (think about multistep method and only one starting point, or
unknown initial condition)...Let us make inexact initial condition by perturbing it a
bit (for a value 0.03)
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a) error in slope very small a b) error in solution not very small!!

abecause the slope does not depend on x in this example, i.e. f = t
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Thus,

in order that the numerical scheme gives us the exact solution (i.e. convergent
solution), following requirements have to satisfied

the method has to be consistent,

as well as stable on perturbation of initial conditions (i.e. zero stability)

convergence=consistency+zero stability
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Convergence

Linear multistep method is known to be convergent if

max
tn∈T
‖εglob(tn, h)‖ → 0, h→ 0

The order of convergence is q if

max
tn∈T
‖εglob(tn, h)‖ ≤ Chq

where

the global error is
εglob = xa(t)− x(t)

xa(t) is the exact solution of the differential equation ẋ = f (t, x)

x(t) is the approximate solution

C is a constant independent of h
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Convergence

Convergence implies consistency. Consistency does not imply convergence.

Theorem

An integration scheme is convergent if and only if it is consistent and zero stable,
and in case it is convergent, the order of consistency and the order of convergence
are equal.
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Zero-stability

Linear multistep method

k∑
j=0

ajxn+j = h
k∑

j=0

bj f (tn+j , xn+j), n = 0, . . . ,N − k

applied on ODE ẋ = f (t, x) gives the stability condition

ẋ = 0→
k∑

j=0

ajxn+j = 0

which is linear homogeneous difference equation.
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Linear homogeneous difference equation

The difference equation
k∑

j=0

ajxn+j = 0

has for a general solution:

un =
r∑

i=1

piξ
n
i ,

where ξi are the roots of first characteristic polynomial

ρ(ξ) =
k∑

i=0

aiξ
i .

Hence, we need to study stability of difference equiation with respect to the zero (initial)

conditions.
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Stability of difference equation

Consider: general difference equation of order 1 and dimension d

xn+1 = F (xn), xn ∈ Rd , n ∈ N.

Definition: An equilibrium point of the dynamical system

xn+1 = F (xn), xn ∈ Rd , n ∈ N

is a state–vector x∗ ∈ Rd such that

F (x∗) = x∗

holds.
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Stability of difference equation

Stability criteria: of xn+1 = Axn

If all λi of A have absolute value smaller than one: (∀i = 1, . . . , d : |λi | < 1),

then for every x0 ∈ Rd the sequence xn
n→∞−→ 0, and x∗ is asymptotically

stable.

If any λi of A has absolute value greater than one: (∃i : |λi | > 1) then there

exist x0 ∈ Rd such that the sequence xn
n→∞−→ ∞, and x∗ is unstable.

If all λi of A have absolute value smaller or equal than one:
(∀i = 1, . . . , d : |λi | ≤ 1) and if there are λj ’s with |λj | = 1, then we cannot
decide whether or not x∗ is stable.

if the system is nonlinear then compute Jacobian and apply previous rules
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Zero stability of approximated ODE

Another way of investigating stability of

k∑
l=0

alxm+l = 0

is to look at general solution:

um =
r∑

i=1

piξ
m
i ,

where ξi are the roots of ρ.
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Zero stability of approximated ODE

A scheme satisfies the root condition (is zero stable) if every root ξi of the first
characteristic polynomial ρ

ρ(ξ) =
k∑

i=0

aiξ
i .

has magnitude smaller than one, |ξi | ≤ 1, and if every root ξi with |ξi | = 1 is a
simple root of ρ.
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Definition

Definition

In order for a consistent scheme to be convergent, a stability property has to be
fulfilled:

A scheme satisfies the root condition (is zero stable) if every root ξi of the first
characteristic polynomial ρ has magnitude smaller than one, |ξi | ≤ 1, and if every
root ξi with |ξi | = 1 is a simple root of ρ.
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Exercise

The method

xn+1 = xn + h

(
5

12
fn+1 +

8

12
fn −

1

12
fn−1

)
applied on

ẋ = f (t, x)

gives the stability condition

xn+1 − xn = 0

i.e. characteristic equation

ξ − 1 = 0

The single root is equal to 1. Hence, the method is zero stable

but not attractive.
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Is zero-stability enough?

The next question to ask is if zero-stability is enough to obtain convergence and
accuracy (namely, the method can converge, but to the wrong solution!!).
Let us observe the numerical integration of the following two systems by explicit
Euler method:

ẋ = −2000x , x(0) = 1

and
ẋ = −x , x(0) = 1

with the time step size h = 10−3 in the time interval [0, 2].
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Convergence

Before integration let us check if the method is

1 consistent:
ρ(ξ) = ξ − 1⇒ ρ(1) = 0, ρ′(1) = 1

,

F = fn ⇒ f =
F

ρ′(1)

2 zero stable
ρ(ξ) = ξ − 1 = 0⇒ ξ = 1

Hence, the method is consistent and zero stable, and thus the method is convergent
when h→ 0.
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Convergence

By comparing numerical results one obtains

Case Truth Numerical Relative error

Case I 0.1353 0.1352 0.001
Case II 1.383e-87 3.055e-92 0.999

This table shows that even the step size was taken to be almost equal to zero, the
relative error can be still huge (99% in second case). But the method is convergent?
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Convergence

The method is convergent as can be seen in the following table because the error
goes to zero when the time step size decreases.

Case Case I Case II

h=1 1 7.08e+90
h=0.1 0.1017 8.78e+105

h=1e-3 0.001 0.9999
h=1e-6 ≈1e-6 0.00995

Since one cannot adopt too small h, the question is now:

When to stop? Which step size is small enough to give us desried accuracy?
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Global convergence

To answer this one, first the global error has to be studied:

εn+1
glob = xa(tn+1)− x(tn+1)

in which xa is analytical and x full numerical solution. Having in mind that

x(tn+1) = x(tn) + hf (tn, xn) = x(tn) + hλxn, n = 0, 1, 2, ...

one may write
εn+1
glob = xa(tn+1)− x(tn)− hλxn
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Global convergence

Expanding xa into Taylor serie

xa(tn+1) = xa(tn) + hẋa(tn) +
h2

2
ẍa + h.o.t.

one obtains

εn+1
glob = xa(tn) + hẋa(tn) +

h2

2
ẍa − xn − hλxn

Here, the first derivative is known from given ODE

ẋa(tn) = λxa(tn)
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Global convergence

This finally gives expression for the global error

εn+1
glob = xa(tn) + hλxa(tn) +

h2

2
ẍa − xn − hλxn + h.o.t.

Collecting terms together one obtains

εn+1
glob = (1 + hλ)(xa(tn)− xn) +

h2

2
ẍa + h.o.t.

εn+1
glob = (1 + hλ)εnglob +

h2

2
ẍa

Note that in last relation the term h2

2 ẍa represents the local error

εloc =
h2

2
ẍa
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Global convergence

Looking at
εn+1
glob = (1 + hλ)εnglob + εloc

one may conclude that the global error in n + 1 step does not only dependend on
the currecnt local error εloc but also on the propagated error from the previous step
(1 + hλ)εnglob. This error gets multiplied by (1 + hλ), and hence the behaviour of
εglob in time will be driven by λ (given model we cannot change) and the step size
h (one can modify). After n steps the global error is proportional to

(1 + hλ)n

and is driven by power law of n.
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Global convergence

In our examples this means

(1 + hλ)n ⇒ (1− h)n or (1− 2000h)n

However, as both 1 − h and 1 − 2000h are smaller than 1 by absolute value (for
h = 10−6), the global error will converge to zero (this corresponds to the exact
solution) with n→∞. However, for h = 10−3, the first term will converge to zero
whereas the other not. Reason is higher value of λ in second ODE. One may show
that the higher the value of λ is, the more difficult is to integrate. In other words
ODE becomes stiffer. Unfortunately, most of practical examples are considered to
be stiff. Due to this reason, this will be the main subject of ODE2!!
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Non-stiff vs stiff - response
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Global convergence

After previous observations have been made, one may give the following conclusion:

In order to get convergent and accurate method for some system (ẋ = λx), one
has to study its stability with respect to the time step size (i.e. stability of

numerical method=difference equation)
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Absolute Stability

To judge if the numerical method with the desired h > 0 is accurate enough, the
term of absolute stability is introduced. This stability is tested on the Dahlquist
problem:

ẋ = λx , x(0) = 1

whose exact solution is
x = exp(λt)

lim
t→∞

|x(t)| =

 0, if λ < 0
1, if λ = 0
∞, if λ > 0

We are interested in the case λ < 0. In this case the ODE is assymptotically stable.
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Absolute Stability

Why we study Dahlquist problem?

Because any system can be represented as a linear system of ODEs. In case that
you study nonlinear ODE then linearise and observe Jacobian.
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Absolute Stability

If the previous ODE is solved by explicit Euler method, then one obtains numerical
solution in a form

xn+1 = xn + hλxn = (1 + hλ)xn ⇒ xn = (1 + hλ)nx0

This difference equation is stable when

|1 + hλ| ≤ 1

Hence, one obtains restirction on the step size

−2 ≤ hλ ≤ 0
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Absolute Stability

It is common practice to speak about absolute stability in the region of complex z
plane

z = hλ

instead in terms of the step size. This allows λ to be complex.

Allowing λ to be complex comes from the fact that in practice we are usually solving
a system of ordinary differential equations (ODEs). In the linear case it is the
eigenvalues of the coefficient matrix that are important in determining stability. In
the nonlinear case we typically linearize and consider the eigenvalues of the Jacobian
matrix. Hence λ represents a typical eigenvalue and these may be complex even if
the matrix is real.
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Absolute Stability

Thus, to get absolutely stable method it must be satisfied

|R(z)| ≤ 1

in which
R(z) = 1 + z

What if we have general linear multistep method?
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Absolute Stability

When general linear multistep method

k∑
j=0

ajxn+j = h
k∑

j=0

bj f (tn+j , xn+j)

is applied on
ẋ = λx

one obtains
k∑

j=0

ajxn+j = h
k∑

j=0

bjλxn+j
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Absolute Stability

i.e.
k∑

j=0

(aj − hλbj)xn+j = 0

which is difference equation. Its stability is given by the roots of characteristic
polynomial

ρ(ξ)− zσ(ξ) = 0

in which

ρ(ξ) =
k∑

j=0

ajξ
j , σ(ξ) =

k∑
j=0

bjξ
j
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Absolute Stability

The difference equation is stable if roots

ρ(ξ)− zσ(ξ) = 0

are smaller by amplitude than 1, or eventually only one of them is equal to 1. With
respect to this one defines

Definition

The region of absolute stability for the LMM is the set of points z in the complex
plane for which the polynomial ρ(ξ)− zσ(ξ) = 0 satisfies the root condition.

Gs := {z ∈ C : |ξ(z)| ≤ 1}
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Example

For Euler method
xn+1 = xn + hλxn

one has
xn+1 − xn ⇒ ρ(ξ) = ξ − 1

and
hλxn ⇒ zσ(ξ) = z

Thus
ρ(ξ)− zσ(ξ) = 0

ξ − 1− z = 0⇒ ξ1 = 1 + z = R(z)

From this follows stability region

Gs := {z ∈ C : |1 + z | ≤ 1}
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Example

To plot the previous region, one has to notice the following: z on boundary of the
stability region gives the root ξ of absolute value equal to 1. In polar coordinates
this means that

ξ = e iθ, θ ∈ [0, 2π]

Since this is the root of
ρ(ξ)− zσ(ξ) = 0

one has
ρ(e iθ)− zσ(e iθ) = 0

and hence

z =
ρ(e iθ)

σ(e iθ)
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Example
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Example

For implicit Euler method
xn+1 = xn + hλxn+1

one has
xn+1 − xn ⇒ ρ(ξ) = ξ − 1

and
hλxn+1 ⇒ zσ(ξ) = zξ

Thus
ρ(ξ)− zσ(ξ) = 0

ξ − 1− zξ = 0⇒ ξ1 =
1

1− z
= R(z)

From this follows stability region

Gs := {z ∈ C : | 1

1− z
| ≤ 1}
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Example
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