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Abstract 

 
 PC-based computational programs have begun to replace procedural 
programming as the tools of choice for engineering problem-solving.  These tools offer 
ease-of-use along with sufficient computational power to solve realistic problems.  
Hence, the development time is reduced, while retaining sufficient complexity.  These 
advantages are particularly important in the classroom, allowing students to focus 
initially on algorithms, with little time spent learning the use of the particular tool.  Later, 
the students can develop more sophisticated solutions using the advanced capabilities of 
the tool.  An example is given, using Microsoft Excel 5.0, implementing algorithms for 
solving ordinary differential equations.  The simple interface of the spreadsheet can be 
used to learn the fundamentals of the algorithm, and then the macro language (Visual 
Basic) can be used to produce more powerful equation solvers.  The final result is an 
adaptive algorithm that can easily be used to numerically solve complex systems of 
differential equations. 
 
Introduction 
 Recently, PC-based computational software has begun to replace the use of 
procedural languages for the solution of engineering problems.  Tools such as 
spreadsheets, equation solvers (such as MathCAD and TK Solver), and symbolic algebra 
programs (such as Maple and Mathematica) offer ease-of-use and built-in functions that 
have significant advantages over procedural programming languages.  These advantages 
also carry over into the classroom, allowing more efficient learning with minimal time 
spent coping with the software itself.  For example, it has been traditional for students to 
take a course in how to program in a procedural language, followed by a course in 
numerical methods.  This is inefficient because problem-solving per se, is not considered 
at length until the second course.  In contrast, a student can learn to use a spreadsheet in a 
few short lessons and can begin to solve problems immediately thereafter.  This allows 
nearly two full courses to focus on numerical methods and problem solving, thus 
providing significantly more depth to the levels of sophistication achieved by 
undergraduate engineering students. 
 This paper gives an example of how a typical, modern computational tool can be 
used to teach problem-solving.  In this case, the Microsoft Excel 5.0 spreadsheet is used 
to teach the numerical solution of ordinary differential equations.  The advantage of the 
spreadsheet is derived both from its versatility and ease-of-use.  The beginner can use the 
standard spreadsheet interface to implement and test a standard algorithm for solving the 
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equations.  (Here a fourth-order Runge-Kutta algorithm is used, but the conclusions 
drawn are equally applicable to other algorithms.)  This platform allows the student to 
comprehend the intricacies of the algorithm, but it can be somewhat cumbersome.  For 
instance, it is difficult, using the standard spreadsheet interface, to change from one set of 
differential equations to another. Thus, as the student advances, the built-in macro 
language (Visual Basic, in this case) can be used to implement a sophisticated algorithm 
that is easily adapted to other equations.  This tool can then be used by the student in 
other courses and, ultimately, in their employment.   
 To demonstrate these principles, this paper provides spreadsheet-based solutions 
to systems of 1 and 2 ordinary differential equations using the standard spreadsheet 
interface, a simple function macro that carries out a single time step, and a subroutine 
(complete with a simple user interface) that carries out the full solution.  This is presented 
in the order that it would be presented in a typical problem-solving course, starting with a 
straightforward implementation and progressing to more sophisticated techniques that are 
more generally applicable. 
 
Using the Standard Spreadsheet Interface 
 Here the standard spreadsheet interface is used to implement a fourth-order 
Runge-Kutta scheme in Excel 5 and solve a single, first-order equation of the following 
form: 
 

dy
dt

f t y= ( , ) , 

 
with the initial condition y(0)=A. The fourth-order Runge-Kutta scheme uses the 
following algorithm to advance a solution from time t to t+∆t: 
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This algorithm is easily implemented in a spreadsheet by setting up columns for each of 
the quantities in the above equations, with each row representing the values at different 
times.  An example is shown in Figure 1 and the formulas input to achieve the results in 
this figure are shown in Figures 2 and 3. In this example, f(t,y)=2y and the initial 
condition is set to A=1.  The analytical solution to this equation is . y e t= 2
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Figure 1:  A sample spreadsheet using the standard spreadsheet interface to solve a first-

order ordinary differential equation 
 
 

 
 

Figure 2:  A sample spreadsheet, with formulas displayed, using the standard 
spreadsheet interface to solve a first-order ordinary differential equation.  Only a portion 

of the formulas are shown here.  The remainder are shown in Figure 3. 
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Figure 3:  A sample spreadsheet, with formulas displayed, using the standard 
spreadsheet interface to solve a first-order ordinary differential equation.  Only a portion 

of the formulas are shown here.  The remainder are shown in Figure 4. 
 
 
Using a User-Defined Function 
 One of the problems with the above approach to solving differential equations is 
the clutter on the screen caused by the printing of extraneous information.  This is an 
advantage for the beginner, as it helps to maintain clarity during composition of the 
solution.  But as the student becomes adept at Runge-Kutta solutions, the added values 
shown on the sheet become a nuisance.  A cleaner approach uses a function macro to take 
a time step and a value for the dependent variable and provides an updated value for the 
dependent variable.  This is implemented in a macro function called rk, which has the 
following form: 
 

Function rk(h, t, y)                     
   k1 = h * f(t, y) 
   k2 = h * f(t + h / 2, y + k1 / 2) 
   k3 = h * f(t + h / 2, y + k2 / 2) 
   k4 = h * f(t + h, y + k3) 
   rk = y + (k1 + 2 * (k2 + k3) + k4) / 6   
End Function 
 
Function f(t, y) 
   f = 2 * y                                
End Function 
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In the next example, we solved the same problem than before. Here h is the time step, t is 
the time at the beginning of  the step, and y is the dependent variable at the beginning of 
the step.  Repeated calls to this function will easily generate a solution to an initial-value 
problem.  An example implementing this routine is shown in Figure 4, with the formulas 
shown in Figure 5.  Note that in the spreadsheet formulas, h  is the cell name for the cell 
holding the time step and Y0  is the cell name for the cell holding the initial value of the 
dependent variable. 
 

 
 

Figure 4:  A sample spreadsheet using a function macro to solve a first-order ordinary 
differential equation 
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Figure 5:  A sample spreadsheet, with formulas displayed, using a function macro to 
solve a first-order ordinary differential equation 

 
 
A System of Two First-Order Ordinary Differential Equations 
 The situation is somewhat more complicated when solving a system of two first-
order equations (or a second-order equation).  Function macros in Visual Basic can only 
return one value.  Hence, it is difficult to solve for two dependent variables 
simultaneously.  However, a function can still be used if the derivative of the dependent 
variable need not be returned to the spreadsheet.  The trick is to use a Static Function to 
save the value of  one of the derivatives between function calls. 
 To solve two ordinary differential equations of the following type: 
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the previous algorithm can be extended to the solution of two first-order equations.  This 
gives: 
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To implement this algorithm in a spreadsheet, one uses the following macro: 
 
 

Static Function RK(h, t, y)  
   If t = 0 Then z = 0 
   k1 = h * g(t, y, z) 
   l1 = h * f(t, y, z) 
   k2 = h * g(t + h / 2, y + k1 / 2, z + l1 / 2) 
   l2 = h * f(t + h / 2, y + k1 / 2, z + l1 / 2) 
   k3 = h * g(t + h / 2, y + k2 / 2, z + l2 / 2) 
   l3 = h * f(t + h / 2, y + k2 / 2, z + l2 / 2) 
   k4 = h * g(t + h, Y + k3, z + l3) 
   l4 = h * f(t + h, Y + k3, z + l3) 
   z = z + (l1 + 2 * (l2 + l3) + l4) / 6 
   RK = y + (k1 + 2 * (k2 + k3) + k4) / 6 
End Function 
 
Function g(t, y, z) 
   g = z 
End Function 
 
Function f(t, y, z) 
   f = -4 * y 
End Function 
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The same approach can be taken to solve a second order differential equation 
 

d y
dt

y
2

2 4= −  

 
by breaking the equation into two first order equations: 
 

dy
dt

z

dz
dt

y

=

= −4
 

 
One complication with this approach is that one must be able to treat the initial value for 
the dependent variable which is not returned to the spreadsheet (in this case,  z).  This is 
more difficult than in the single-variable case because the current value of  z is not passed 
to the function as an argument.  The first line of the subroutine solves this problem by 
setting the initial value for z when t=0. 
 
 
 
 
Using a Subroutine to Solve the Equation 
 One drawback of this solution is that you must copy the appropriate formula into 
as many cells  as is needed to generate a solution.  This can be cumbersome, so a more 
fully automated alternative would be desirable.  This can be achieved using a subroutine.  
In this case the subroutine carries out all the steps necessary to solve the problem.  This 
has the added benefit that the user can choose to only print (in the spreadsheet) a subset 
of the steps.  A subroutine developed for implementing this algorithm to solve second-
order differential equations is: 
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Sub RungekuttaSR2call() 
    [b14].Select                      
    steps = Range("steps")       
    tnot = Range("tnot") 
    tend = Range("tend") 
    Yo = Range("Yo") 
    Zo = Range("Zo") 
    h = (tend - tnot) / steps 
    T = 0 
    Y = Yo 
    z = Zo 
    For i = 1 To steps 
      Call rk2sr(h, T, Y, z, ynew, znew) 
      ActiveCell.Offset(i - 1, 0).Value = T 
      ActiveCell.Offset(i - 1, 1).Value = Y 
      ActiveCell.Offset(i - 1, 2).Value = z 
      T = T + h 
      Y = ynew 
      z = znew 
   Next 
End Sub 

This subroutine takes values for the number of time steps (steps), the beginning time 
(tnot), and the finishing time (tend), along with initial values for both dependent variables 
(Yo and Zo) and then makes repeated calls to a stepping routine (rk2sr) to advance the 
solution.  The Range command is used to read input values from the spreadsheet and the 
ActiveCell.Offset(i, j).Value command is used to write the results back to the spreadsheet, 
offsetting the values to write the results for each time step on a different line.  The 
stepping routine and necessary functions are: 
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Sub rk2sr(h, t, y, z, ynew, znew)        
    k1 = h * g(t, y, z) 
    l1 = h * f(t, y, z) 
    k2 = h * g(t + h / 2, y + k1 / 2, z + l1 / 2) 
    l2 = h * f(t + h / 2, y + k1 / 2, z + l1 / 2) 
    k3 = h * g(t + h / 2, y + k2 / 2, z + l2 / 2) 
    l3 = h * f(t + h / 2, y + k2 / 2, z + l2 / 2) 
    k4 = h * g(t + h, y + k3, z + l3) 
    l4 = h * f(t + h, y + k3, z + l3) 
    znew = z + (l1 + 2 * (l2 + l3) + l4) / 6  
    ynew = y + (k1 + 2 * (k2 + k3) + k4) / 6 
End Sub 
 
Function g(t, y, z) 
g = z 
End Function 
 
Function f(t, y, z) 
f = -4 * y 
End Function 

 
The stepping subroutine rk2sr takes values for the time step, time, and both dependent 
variables and calculates new values for the dependent variables using a fourth-order 
Runge-Kutta scheme.  The two functions define the desired differential equation.  An 
example of this type of spreadsheet is shown in Figure 6.  The user merely inputs the 
initial values, the number of steps desired, and the time interval, and then the solution is 
obtained by pressing the button on the sheet. 
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Figure 6:  A sample spreadsheet using a subroutine macro to solve a second-order 
ordinary differential equation.  There are no formulas, because the macro writes the 

solution directly to the spreadsheet. 
 

 
An Adaptive Method for First-Order Equations 
 The techniques described above are useful because they are easily implemented, 
but they are inherently inefficient.  When the step size is fixed, one must choose it such 
that the error induced in regions where the solution changes most rapidly is below some 
desired value.  Obviously, this step size will be smaller than necessary in all other 
regions.  A more efficient method will adjust the time step according to the local 
variation in the solution, requiring that this local solution achieve a prescribed accuracy. 
 To build an adaptive time step solver, the algorithm must return information about 
its progress and an estimate of its truncation error. In this case, our algorithm is based on 
the Runge-Kutta-Fehlberg[1] method, which uses the embedded Runge-Kutta formulas to 
adjust the step.  The general form of a fifth-order Runge-Kutta formula is 
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 The embedded fourth-order formula is 
 

( )y y c k c k c k c k c k c k O hn n+ = + + + + + + +1 1 1 2 2 3 3 4 4 5 5 6 6
5* * * * * * *  

 
 The values of the needed constants that are used are given in the following table. 
These are not Fehlberg’s original values, but those found by Cash and Karp[2], who 
provide a more effective method with better error properties[1]. 
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Table 1: Cash-Karp Parameters for the Embedded Runge-Kutta Method 

 
 
 The error is then calculated as  
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 From these equations it is found that the error progresses as h5. Thus, if an error 
(errory)1 is produced when taking a step h1, one could easily infer what step h0 would 
need to take in order to produce an error (errory)0. 
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 Now, by calling (errory)0 the desired accuracy, this equation can be used in two 
ways:  
 
 1. If the desired is larger than the calculated error, it determines how much the 

time step must be decreased when the current step is repeated. 
 
 2. If the desired error is smaller than the calculated error, it determines how 

much the time step can safely be increased when the next step is calculated. 
 
 In addition, a reference value of the dependent variable is needed for comparison 
with the calculated error. For example, in some cases one would like to obtain constant 
fractional errors at each step and in other occasions one is interested in keeping low the 
global accumulation of errors. The form of the reference error value in our algorithm is 
 

( )value Abs y Abs h dy
dtref = + ⋅⎛

⎝⎜
⎞
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 The first term of this equation is valid when the solution reaches an asymptotic 
value different from zero. The second term is valid when the solution passes through zero 
with a certain slope. This form, however, would cause problems when the function passes 
through zero with zero slope. Moreover, because of this new definition of the error, 
which has an implicit scaling with the time step, the exponent 0.25 must be used instead 
of 0.20 when decreasing the time step. That is: 
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 Then, to solve an ordinary differential equation of the form 
 

dy
dt

f t y= ( , )  

 
with the initial condition 
 

( )y A0 = , 
 
the macro described below can be used.  The central portion of the macro loops through a 
series of optimized time steps until the requested time is reached.  Our version of this 
macro is: 
 

Sub adaptive_rungekutta() 
    [F13].Select 
    htry = Range("htry").Value 
    ynot = Range("ynot").Value 
    tnot = Range("tnot").Value 
    tend = Range("tend").Value 
    h = htry 
    t = tnot 
    y = ynot 
    dt = tend - tnot 
    hnew = htry 
    ActiveCell.Value = t 
    ActiveCell.Offset(0, 1).Value = y 
    ActiveCell.Offset(0, 2).Select 
    Do 
        Call optimize(h, t, y, hnew) 
        t = t + h 
        ActiveCell.Value = h 
        ActiveCell.Offset(1, -2).Value = t 
        ActiveCell.Offset(1, -1).Value = y 
        ActiveCell.Offset(1, 0).Select 
        h = hnew 
        tnew = t 
        dt = tend - tnew 
    Loop Until dt < hnew 
    h = dt 
    Call rkfive(h, t, y, ynew, ynewstar) 
    y = ynew 
    t = t + dt 
    ActiveCell.Value = dt 
    ActiveCell.Offset(1, -2).Value = t 
    ActiveCell.Offset(1, -1).Value = y 
End Sub 
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The central call here is the call to the  procedure optimum_step, which chooses the step 
size needed to achieve a desired accuracy.  This procedure is: 
 
 

Sub optimize(h, t, y, hnew) 
    accuracy = Range("accuracy").Value 
    safety = Range("safety").Value 
    expup = -0.2 
    expdown = -0.25 
    limerr = (5 / safety) ^ (1 / expup) 
    dummy = 1 
    Do 
        Call rkfive(h, t, y, ynew, ynewstar) 
        yerr = Abs(ynew - ynewstar) 
        yscal = Abs(ynew) + Abs(h * func(t, y)) 
        ratio = Abs(yerr / yscal) 
        maxerr = ratio / accuracy 
        If maxerr > 1 Then 
            hnext = safety * h * (maxerr ^ expdown) 
            If hnext < (0.1 * h) Then hnext = 0.1 * h 
            h = hnext 
            dummy = 1 
        Else 
            y = ynew 
            dummy = 0 
        End If 
    Loop Until dummy = 0 
        If maxerr > limerr Then 
            hnew = safety * h * (maxerr ^ expup) 
        Else 
            hnew = 5 * h 
        End If 
 End Sub 
 

This procedure calls other procedures which are not displayed here.  The rkfive routine 
carries out single fifth-order and embedded-fourth-order Runge-Kutta steps, returning the 
values as ynew and ynewstar, respectively. 
 The logic of these procedures is described by the flow-chart in Figure 7. 
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READ INITIAL CONDITIONS

CALL
OPTIMUM_STEP

X = X + Hgood

CALCULATE
ERROR(Htry)

Htry

ERROR(Htry)>ACCURACY DECREASE
HtryYES

Hgood

NO

CALCULATE Hnext

Hgood
Ygood

PLOT
X, Y, H

Xleft = Xend - X

Xleft > Hnext Hnext

YES

CALCULATE LAST
TIMESTEP

NO

PLOT
X, Y, H

END

. 
 
 

Figure 7:  Flow chart for adaptive Runge-Kutta method. 
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 The general idea behind an adaptive time step method for multidimensional 
problems is the same as the method seen for one-dimensional equations. The major 
complication is deciding how to define the appropriate error for a multi-dimensional 
system.  The approach adopted here is to consider the errors in each dependent variable 
separately and choose an appropriate time step to maintain the desired error for each 
variable at each time step.  That is, we deal only with the maximum error in each step.  
An implementation of this scheme for systems of two first-order ordinary differential 
equations is included in the enclosed diskette.   
 An example of such a solution is shown in Figure 8.  This spreadsheet solves the 
first-order, ordinary differential equation: 
 

dy
dt

y e t= −*  

 
with the initial condition y(0)=1.  As is shown, the step size is increased as the solution 
approaches the steady state solution, thus maximizing the efficiency of the solution.  A 
second spreadsheet, designed to solve a system of two equations using the same 
algorithm is provided with the enclosed floppy disk. 
 
 

 
 
Figure 8:  A sample spreadsheet using a subroutine macro to solve a first-order ordinary 

differential equation.  The step size is adjusted to achieve the prescribed accuracy. 
 
Conclusions 
 A modern computational tool such as Microsoft Excel 5.0 can be an excellent 
platform for teaching engineering computation.  It has a simple interface, allowing focus 
on various numerical algorithms, but it also has a powerful macro language that allows 
the implementation of more sophisticated algorithms.  An example implementing fourth-
order Runge-Kutta algorithms for the solution of ordinary differential equations 
demonstrates these principles. 
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