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Abstract
In this work, methods for using Langmuir probes (LPs) in magnetized plasmas are presented.
The electron part of the current–voltage probe characteristics is used to obtain the plasma
potential, the electron energy distribution function (EEDF), the electron temperature and the
electron density. The application of LPs to EEDF evaluation in the presence of magnetic fields
in the range 0.01–0.1 T is investigated and discussed based on kinetic theory in a non-local
approach. Data for EEDFs in magnetic fields in the range 0.015–0.079 T are acquired using
current–voltage characteristics measured in low pressure Ar and He dc gas discharges. It is
also shown that the EEDFs are Maxwellian up to the energy of the first excited states of argon
and helium. The values of the plasma potential, electron temperature and density are
evaluated. Comparison of the results obtained with probes perpendicular and parallel to the
magnetic field results in satisfactory agreement.

The results presented demonstrate that the procedures proposed allow one to acquire the
main plasma parameters using the electron part of the current–voltage LP characteristics in
magnetized plasmas.

(Some figures may appear in colour only in the online journal)

1. Introduction

Among the contact methods of plasma diagnostics, electric
probes are the least expensive and remain the fastest and
most reliable diagnostic tools allowing one to obtain the
values of important plasma parameters; Langmuir probes (LPs)
allow local measurements of the plasma potential, the charged
particle density and the electron energy distribution function
(EEDF), f (ε) [1–5].

The probe technique is relatively simple when all the
requirements of the ‘classical’ theory are satisfied, namely [6]:

(a) The plasma is isotropic within a scale much larger than
the mean free path of the charged particles;

(b) the mean free paths of the electrons, λ, and ions, λi, are
much larger than the probe radius, R, and the thickness of
probe sheath, d;

(c) the probe holder does not disturb the plasma in the vicinity
of the probe tip;

(d) there is neither generation nor recombination of charged
particles, nor are there chemical reactions in the probe
sheath or at the probe surface;

(e) the surface area of the reference probe is large enough to
sustain all the current collected from the measuring probe
without a noticeable potential drop;

(f) there are no fluctuations in the plasma characteristics;
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(g) the probe surface is free of contamination, such as
dielectric films.

Point (b) indicates that electrons originating from the
undisturbed plasma and crossing the probe sheath reach the
probe surface without any collision. This means that the probe
operates at very low gas pressures or in a weak magnetic field
when the electron mean free path λ or the Larmor radius RL

are larger than the probe radius R and the thickness of the
sheath d [2–4]:

λ, RL � R + d. (1)

In the ‘classical regime’, probes operate in the absence of a
magnetic field and at low gas pressures in the range 0.1–100 Pa.
Then the electron probe current of the IV characteristic is
expressed [2] by

Ie(U) = −2πeS

m2

∫ ∞

eU

(W − eU)f (W) dW, (2)

where e and m are the electron charge and mass, S is the
probe area, W = 1

2mc2 + eU is the total electron energy in
the probe sheath and c is the electron velocity at the sheath
edge. The probe is negatively biased by a potential Up, U is the
probe potential with respect to the plasma potential Upl(U =
Up − Upl) and f (ε) is the isotropic EEDF, normalized by

4π
√

2

m3/2

∫ ∞

0
f (W)

√
W dW =

∫ ∞

0
f (ε)

√
ε dε = n. (3)

The EEDF can be determined using the Druyvesteyn
formula [1]

f (ε) = 2
√

2m

e3S

d2Ie

dU 2
. (4)

In many different contemporary technologies, such as
plasma chemistry, etching, plasma polymerization and thin
layer dielectric deposition, relatively high gas pressures of
100–1000 Pa or a magnetic field in the range 0.01–0.1 T are
required. In this case, due to the collisions in the probe
sheath, the interpretation of the experimental data acquired in
order to obtain the correct values of the plasma parameters
becomes more complicated. This concerns EEDF probe
measurements in a wide range of plasmas, from magnetron gas
discharges to tokamak edge plasmas. Knowledge of the real
EEDF is of great importance in understanding the underlying
physics of processes occurring at the magnetized plasma, such
as the formation of transport barriers, cross-field diffusion
coefficients and plasma–substrate interactions. Although the
electric probe method is as old as plasma physics itself, the
potential of the method has not yet been fully exploited.
New probe theories and designs constantly appear with the
results summarized in numerous reviews and monographs [2–
6]. In spite of this, incorrect applications of electric probes
are commonly found in the literature. The errors mainly arise
from a lack of awareness about the multitude of regimes of
probe operation and the limits of validity of theories.

Swift [7] was the first to take into account the probe size
and the effect of collisions in the probe sheath in evaluating the
EEDF. He pointed out that the second derivative of the IV probe
characteristic is distorted due to the depletion of electrons
sinking on the probe surface at a finite R/λ ratio. Similar

results on the applicability of the second derivative probe
method were also obtained in [8, 9] through a more detailed
analysis using kinetic theory in a non-local approach. In [10]
the authors discussed an improved way of obtaining the EEDF
at intermediate gas pressures (in the range 100–1000 Pa). In [9]
it was shown that at high gas pressures (above 1000 Pa) the
EEDF is represented by the first derivative instead of the second
derivative of the electron probe current. The evaluation of the
EEDF in a strongly magnetized plasma (magnetic field B in the
range of 1–5 T) was discussed in [11], where the first derivative
probe method was successfully applied to probe investigations
of a tokamak edge plasma.

In this work, all requirements of the classical regime
enumerated above with the exception of (b) are satisfied.
We present probe measurements in argon and helium dc gas
discharges in the presence of a magnetic field in the range
0.01–0.1 T with the aim of studying and, based on kinetic
theory in a non-local approach, discussing the application of
LPs in magnetized plasmas for evaluating the EEDF, f (ε),
the plasma potential, the electron temperature and the electron
density.

2. Electron probe current measurements in
magnetized plasmas

A kinetic theory for processing the electron probe current in
the presence of a magnetic field was published in [8, 9]. The
theory of magnetized plasmas was developed for LPs in a
non-local approach when the electrons reach the probe in a
diffusion regime. It was shown that the electron probe current
is expressed by an extended equation

Ie(U) = − 8πeS

3m2γ

∫ ∞

eU

(W − eU)f (W) dW

1 + ((W − eU)/W)ψ(W)
(5)

The value of the geometric factor γ varies monotonically from
0.71 to 4/3: γ = 4/3 when λ, RL � R + d and γ = 0.71
when λ, RL � R + d [9].

The important parameter in equation (5) is the diffusion
parameter ψ = ψ(W). In the presence of a magnetic field B,
ψ depends on the electron free path λ(W) and Larmor radius
RL(B, W), as well as on the shape, the size and the orientation
of the probe with respect to the magnetic field.

Let us consider the limiting cases regarding the value of
the diffusion parameter:

(1) When ψ(W) � 1 (low gas pressure and absence
or very weak magnetic field), neglecting the second term
((W − eU)/W)ψ(W) in the denominator under the integral
in equation (5) yields the classical expression for the electron
probe current (1) and the EEDF can be determined using
the Druyvesteyn formula (4). Although, as was shown by
Swift [7], a drain of electrons to the probe is present at a finite
R/λ ratio, the true value of f (ε) at low probe potentials differs
by less than 25% from that determined by the classical theory
and the EEDF is well characterized by I ′′(U).

(2) When ψ(W) ∼ 1 (intermediate gas pressure and/or weak
magnetic field) we have to use equation (5). Its second
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Figure 1. Comparison of the second derivative model curve (dashed
line) for a Maxwellian EEDF (T = 3 eV) with the experimental
curve (dots) at ψ ∼ 1. The solid line presents the second derivative
when ψ � 1.

derivative yields the equation

I ′′(U) = Cf (eU) − C

∫ ∞

eU

K ′′(W, U)f (W) dW, (6)

where

K ′′(W, U) = 2ψW 2

[W(1 + ψ) − ψeU ]3

and

C = 8πe3S

3m2γ
.

The first term in equation (6) is the well-known Druyvesteyn
formula. The second term describes the effect of plasma
depletion caused by charged particles sinking on the probe
surface.

Figure 1 presents model calculations at ψ ∼ 1 for a
Maxwellian EEDF with temperature T = 3 eV [10]. It is
seen that the second derivative is not a good representation of
the EEDF because K ′′(W, U) decreases with the increase in
U and of the energy of the electrons and only the high energy
part of the EEDF at small R is well characterized by I ′′(U).
At small values of Uand the electron energy, K ′′(W, U) ≈
2ψ/(W(1 + ψ)3) increases indefinitely and I ′′(U) decreases.
In addition, the plasma potential Upl does not coincide with the
potential U ∗ at which the second derivative is zero I ′′(U ∗) = 0,
as is usually assumed. Consequently, an additional error will
result if the concentration of the charged particles is obtained
by integration over the second derivative.

In the case of a Maxwellian EEDF at ψ(W) ∼ 1, a
refined procedure based on obtaining the best fit between model
calculations and experimental data was proposed and proved
in [10]. The fitting parameters are the electron temperature,
T , the electron density, n, and the plasma potential Upl. The
temperature is evaluated at high probe potentials where the
second derivative is relatively weakly distorted. The next step
is to calculate the second derivative following equation (6)
using a Maxwellian EEDF normalized to 1. The results of the
model calculations are fitted to the experimental curve using
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Figure 2. Comparison of the experimental (solid line) and model
(dashed line) EEDF at electron temperature T = 2.5 eV and ψ � 1.

its maximum at low probe potentials. The plasma potential is
evaluated by shifting the model curve along the U -axis, while
the electron density is estimated by multiplying the model data
by a coefficient to achieve the best fit.

(3) When ψ(W) � 1 (high gas pressure or magnetic field)
the EEDF is represented by the first derivative instead of the
second derivative as was shown in [9, 11, 12]:

I ′
e(U) = −8πe2S

3m2γ

×
(

eU

ψ
f (eU) +

∫ ∞

eU

Wf (W) dW

(1 + ψ)[(1 + ψ)W − ψeU ]

)
.

(7)

In the case of high gas pressure plasmas or in magnetized
plasmas, the contribution of the second term in equation (7) is
usually assumed small and is therefore neglected.

The accurate evaluation of the EEDF requires that the
value of the plasma potential, Upl, be known. In [11] we
proposed the following procedure: the electron temperature
is evaluated from the slope in logarithmic scale of the first
derivative of the experimental IV characteristic. Using this
temperature, a model curve of the first derivative (derivative
of equation (5)) is calculated. Then the best fit with the
experimental first derivative provides the value of the plasma
potential.

At ψ � 1 the EEDF is directly represented by the first
derivative of the electron probe current:

f (ε) = 3
√

2mγ

2e3S

ψ

U

dIe

dU
. (8)

A comparison of the experimental and model EEDF at electron
temperature T = 2.5 eV and ψ(W) � 1 is presented in
figure 2. The discrepancy in the range of 0–2.5 eV is due to the
mathematical approach rather than to physical phenomena [6].

It is obvious that to evaluate the EEDFs in cases (2) and
(3), the values of the diffusion parameter must be known. The
solution in the general case is presented in [8, 9].
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The kinetic equation for the isotropic EEDF in the absence
of a magnetic field is [8]

∇rD(w)∇rf (W, r) = 0, (9)

where D(w) = cDr = c2λ/3. The boundary conditions are

f (r → ∞, W) = f∞(W), (10)

f (R, W > eU) = γf1(R, W). (11)

Here the anisotropic part of EEDF is f1(r, W) =
−λ∇rf (r, W) = −λ∂f /∂r .

To generalize the problem, the probe is considered as
an ellipsoid of revolution [9] with dimensions R and b =
L/2 (L being the probe length). Since the probe surface
is equipotential, the diffusion equation (9) depends on the
elliptical coordinate σ , determined as

x2 + y2

R2(σ 2 ± 1)
+

z2

R2σ 2
= 1. (12)

At the probe surface σ = σ0 = b/β, β = (|b2 − R2|)1/2

and the ‘+’ and ‘−’ signs refer to oblate (b < R) and prolate
(b > R) ellipsoids, respectively.

The boundary condition (10) remains the same, but the
condition (11) can be written as

σ = σ0
λ

S
2πβ(σ 2 − 1)

∂

∂σ
f = 1

γ
f. (13)

The solution of equation (9) with boundary conditions
(10) and (13) yields the extended equation for electron probe
current (5) with diffusion parameter:

ψ(W) = S

4πβγλ(W)

∫ ∞

σ0

D(W)dσ

(σ 2 ∓ 1)D(W − eφ(σ ))
. (14)

Here D(W) is the diffusion coefficient in bulk plasma and
D(W − eφ(σ )) is that in the probe sheath (φ(σ ) being the
potential variation introduced by the probe). Assuming a
constant coefficient of diffusion, for a thin sheath we have

ψ(ε) = S

8πβλ(ε)γ
ln

(
σ0 + 1

σ0 − 1

)
b > R,

ψ(ε) = S

8πβλ(ε)γ
(π − 2 arctan σ0) b < R.

(15)

In the presence of a magnetic field, the coefficient of diffusion
D(W) in equation (9) becomes a tensor with two components:

D‖(w) = c2λ/3 and D⊥(w) = D‖(w)/ρ2,

where ρ =
[

1 +

(
λ

RL

)2
]1/2

.

In this case, the kinetic equation for the EEDF has the form of
the anisotropic diffusion equation:

D⊥(w)�rf + D‖(w)�zf = 0. (16)

As we mentioned above, the solution for ψ(W) depends on
the probe orientation with respect to the magnetic field. Let us
consider a probe placed along the magnetic field. Changing the

scale z → z′/ρ we can reduce the problem to the one solved
above so that for the diffusion parameter we have

ψ‖(W) = Sρ

8πβM
‖ λ(W)γ

ln

(
σM

‖ + 1

σM
‖ − 1

)
b′ > R,

(17a)

ψ‖(W) = Sρ

8πβM
‖ λ(W)γ

(π − 2 arctan σM
‖ ) b′ < R,

(17b)

where βM
‖ = (|R2 − b′2|)1/2, b′ = b/ρ, σM

‖ =
b′/(|R2 − b′2|)2 = b′/βM

‖ .
For a probe placed across the magnetic field using this

approach with general ellipsoidal coordinates, the diffusion
parameter is found to be [9, 13]

ψ⊥(W) = Sρ

4πβM
⊥ λ(W)γ

F(φ/α), (18)

where F(φ/α) is an incomplete elliptical integral of the first
kind [14] and

βM
⊥ = (|R′2 − b2|)1/2 R′ = R

ρ
cos(φ) = R

b

cos(α) = (R2 − R
′2)

βM
⊥

.

The results presented are important, but for practical use
they need to be simplified bearing in mind the actual plasma
conditions. Let us consider a cylindrical probe with radius
R = 1 × 10−4 m and length L = 5 × 10−3 m. For an argon
gas discharge at gas pressure p ∼ 1 Pa and magnetic fields
in the range B = 0.01–0.1 T with the probe located along the
magnetic field we have

λ ∼ 1 m RL ∼ 10−5 m, ρ ∼ 105, σM
‖ ∼ 10−3.

Then R � b′; π � 2 arctan 10−3 and since

ρ =
[

1 +

(
λ

RL

)2
]1/2

≈ λ(W)

RL(B, W)
,

using equation (17b) we arrive at

ψ‖(W) = bρ

2λ(W)γ
π = πL

4γRL(B, W)
= ψ

‖
0√
W

. (19)

Here ψ
‖
0 is constant with respect to the energy part of the

diffusion parameter.
When the probe is placed across the magnetic field, using

equation (18) we obtain

ψ⊥(W) = R

γRL(B, W)
F(φ/α). (20)

Demidov et al [15, 16] used a different approach for the
diffusion parameter when the probe is placed across the
magnetic field:

ψ⊥(W) = R

γRL(B, W)
ln

(
πL

4R

)
. (21)
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Figure 3. Schematic representation of the experimental set-up (a) and photographs of the emissive cathode (b) and the solenoid (c).

At large values of the parameter ρ equation (21) yields values
for the diffusion parameter 6–8% lower than the one obtained
by equation (20), but this difference in practice does not
affect the general results for the plasma parameters acquired.
For more complicated non-homogeneous plasmas (flowing,
turbulent, chemically active, etc) there are indications that
the probe length L in equation (21) must be increased up
to the characteristic length of the inhomogeneity L′, e.g., the
characteristic length of turbulence [11]. The problem is still
under investigation and is beyond the scope of this work.

In both cases, we also may use the diffusion parameter in
the form

ψ⊥(W) = ψ⊥
0√
W

.

3. Experimental results and discussion

The plasma was produced in a stainless-steel discharge tube
with length 1.5 m and diameter 0.17 m (figure 3(a)) with a hot
filament cathode (figure 3(b)). The wall of the discharge tube
was grounded. A negative potential of −35 V was applied to
the cathode while the gas discharge current was kept constant
at 2 A. An axial magnetic field B was created by a solenoid

(figure 3(c)) and was varied from 0.015 T to 0.079 T. The
working gases were argon and helium at pressure p = 0.8 Pa.

The cylindrical LP with R = 1 × 10−4 m and length
L = 5 × 10−3 m was placed axially and radially at the centre
of the discharge tube. The probe surface was cleaned by ion
bombardment by applying a large negative potential before
measuring the IV probe characteristics. The measurements
were performed with the probe oriented in parallel and
perpendicular to the magnetic field. The derivatives were
calculated numerically. The results of the measurements of
the plasma parameters at different values of the magnetic field
are presented in table 1.

The accuracy of the electron temperature evaluation was
10%. Taking into account the uncertainties in all the values
measured, the uncertainty in the electron density evaluation
did not exceed 25%. The accuracy of the plasma potential
evaluation was 20%. The discrepancies between the plasma
potential values measured by the perpendicular and the parallel
probe in the range of magnetic fields from 0.055 T to 0.079 T
can be explained by the radial averaging in the measurements
by a perpendicular probe, since the parallel probe was oriented
along the magnetic field lines.

In evaluating the uncertainties, additional factors
(according to the classical regime requirements with the

5
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Table 1. Experimental results of the plasma parameters at different values of the magnetic field and different orientations of the probe.

Perpendicular probe Parallel probe

Second derivative First derivative Second derivative First derivative

T n × 1018 Upl T n × 1018 Upl T n × 1018 Upl T n × 1018 Upl

B (T) ψ0 (eV) (m−3) (V) (eV) (m−3) (V) ψ0 (eV) (m−3) (V) (eV) (m−3) (V)

Ar
0.015 1.2 3.2 0.5 3.2 — — — 13 3.2 1.1 6.2 2.4 1 6.2
0.025 2 2.9 1.5 4 — — — 21 2.9 2.4 5.9 2.5 2.1 5.3
0.035 2.9 2.3 4.0 4.6 — — — 30 2.3 4.5 5.2 2.1 4.1 5
0.045 3.7 2.2 4.8 4.1 2.2 4.3 5 38 2 6 4.5 2 4.8 4
0.055 4.6 2.1 6.0 3.6 2.2 6.0 3.8 48 — — — 1.8 6.4 2.5
0.065 5.4 2.1 6.4 2.7 2.1 6.4 3.2 55 — — — 1.8 6.4 1.7
0.079 6.5 2.3 7.5 2 2.3 7.4 2 67 — — — 1.7 7.6 0.2
He
0.015 1.2 2.3 0.5 0.5 — — — 13 2.3 0.8 0.9 2.1 0.6 1
0.025 2 2.3 0.9 −2.7 — — — 21 2.3 1.1 −2.3 2.1 1.1 −3
0.035 2.8 2.2 0.8 −4.4 — — — 30 2.2 1 −4 2.2 0.9 −5
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Figure 4. Electron probe current normalized to the electron density
measured by a probe oriented perpendicularly to the magnetic field.

exception of (b)) affecting the accuracy of the data measured
were taken into account [10].

It is seen that as the magnetic field is increased, the electron
density increases, which can be explained by the decrease in the
cross-field diffusion of the electrons to the wall of the discharge
tube. The influence of the magnetic field on the IV probe
characteristics measured is illustrated in figure 4, where the
probe current is normalized to the electron density.

An example of the extended second derivative probe
method application when the value of the diffusion parameter is
relatively small is shown in figure 5. In an argon gas discharge
and in the presence of a magnetic field of 0.025 T, the EEDF is
Maxwellian with a temperature of 2.9 eV. The instrumental
function of the differentiation technique is triangular with
a half-width equal to the step change in the probe bias
[6, 10, 17]. To take into account the instrumental function
influence when the experimental and model curves were
compared, both of them were smoothed and differentiated in
the same way.

As the value of the diffusion parameter increases, both
techniques, namely, the extended second derivative technique
and the first derivative technique, can be employed (figures 6(a)
and (b))

In figure 7, a comparison is presented of evaluating the
EEDF by a perpendicular and a parallel probe for the same
conditions at 0.025 T. The results obtained are in satisfactory
agreement.

We must note that in our case the second derivative probe
method can be used up to values of ψ0 ∼ 30–35, when the
level of the signal-noise ratio is still acceptable.

When using the first derivative probe method at relatively
low values of ψ0, as in the case of the perpendicular probe we
have to use equation (7) for evaluating the EEDF. At relatively
high values of the diffusion parameter, we must check for the
contribution of the second term in equation (7). Concerning
the results presented in figure 6(b), a comparison between the
experimental first derivative and the model calculations results
is presented in figure 8:

One can see that the contribution of the second term
is within the experimental error. Then, bearing in mind
equation (19), to evaluate the EEDF we can use the expression
for a probe oriented in parallel to the magnetic field:

f (ε) = − 3π
√

2mL

8e3SRL(B, ε)U

dI

dU
. (22)

The comparison of the results obtained with the extended
second derivative and the first derivative probe methods show
satisfactory agreement. When comparing the methods, we
should emphasize that the first derivative probe method directly
yields the EEDF not only in the Maxwellian case but also
when the energy distribution of the electrons deviate from
the Maxwellian. The application of the extended second
derivative probe method when the EEDF is non-Maxwellian
is more complicated: mathematically speaking, to deduce the
EEDF from probe measurements under collisional conditions
requires that two coupled inverse problems be solved, since
the distortion of the second derivative includes an integral
over the unknown EEDF and the data are convoluted by the
instrumental function [10].

6
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Figure 5. (a) IV probe characteristic measured in an argon gas discharge in the presence of a magnetic field of 0.025 T. (b) Comparison of
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Figure 9. (a) IV probe characteristic measured in an argon gas discharge in the presence of a magnetic field of 0.055 T. (b) Comparison
between the experimental first derivative (solid line) and model curve (dashed line) for obtaining the plasma potential. (c) Evaluated EEDF
(solid line) in an argon gas discharge in the presence of a magnetic field of 0.055 T and model Maxwellian EEDF (dashed line) at an electron
temperature of 1.8 eV.

Expression (22) is used to evaluate the EEDF at a magnetic
field B = 0.055 T in an argon gas discharge (figure 9).
Figure 9(a) presents the experimental IV probe characteristic
measured with the probe parallel to the magnetic field.
Figure 9(b) is a comparison between the experimental first
derivative and the model curve in view of evaluating the plasma
potential [11]. To coincide with the model curve (where the
plasma potential is set at zero) the experimental curve is shifted
by 2.5 V, which is the value of the plasma potential. Because
of the influence of the magnetic field, the minimum of the
curves is shifted away from the plasma potential at a distance
equal to the electron temperature value expressed in volts. The
discrepancy between the model curve and the experimental
curve behaviour after the minimum is due to the fact that the
probe current does not saturate after the probe bias reaches
the plasma potential. A more or less pronounced change in the
experimental curve slope can be seen near the plasma potential.

Figure 9(c) shows the evaluated EEDF (solid line) in an
argon gas discharge in the presence of a magnetic field of
0.055 T. The EEDF is generally Maxwellian, although after
the energy of the first excited state of argon (11.55 eV) the
influence of a group of faster electrons can be seen (figure 10).
The effect becomes more pronounced as the value of the

magnetic field applied is raised. To clarify this, additional
experiments must be performed at different gas pressures
in combination with optical measurements of the metastable
states population [18, 19].

While the Ar gas discharge was very stable without
significant fluctuations of the plasma potential and noises
within the entire interval of magnetic field variation, the value
of the noise amplitude increased rapidly in He discharges at
magnetic fields above 0.035 T; thus, the probe measurements
were performed up to this value of the applied magnetic field.

An example of the EEDF measured in a He gas discharge
with a probe oriented in parallel to a magnetic field of 0.015 T
is presented in figure 11.

4. Conclusion

In this work, methods for using LPs in magnetized plasmas
are presented. The electron part of the current–voltage probe
characteristics was used to obtain the plasma potential, the
EEDF, the electron temperature and the electron density:

• The application of LPs to EEDF evaluation in the presence
of magnetic fields in the range 0.01–0.1 T was investigated
and discussed based on kinetic theory in a non-local
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Figure 11. EEDF measured in a He gas discharge with a probe
oriented parallel to the magnetic field of 0.015 T.

approach. The diffusion parameter in an extended formula
of the electron probe current was estimated for cylindrical
probes oriented perpendicular and parallel to the magnetic
field lines.

• Data for EEDFs in magnetic fields in the range
0.015–0.079 T were acquired using current–voltage

characteristics measured in low pressure Ar and He dc
gas discharges. It was shown that at diffusion parameter
values ψ ∼ 1, the extended second derivative method
must be used, while at ψ � 1, the first derivative of the
electron probe current yields a good representation of the
EEDF. At intermediate values of the diffusion parameter,
the two methods yield comparable results.

• It was also shown that the EEDFs are Maxwellian up to
the energy of the first excited states of argon and helium.
The values of the plasma potential, electron temperature
and density were evaluated. Comparison of the results
obtained with probes perpendicular and parallel to the
magnetic field resulted in satisfactory agreement.

The results presented demonstrate that the procedures
proposed allow one to acquire the main plasma parameters
using the electron part of the current–voltage LP characteristics
in magnetized plasmas.
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