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Pomocí diagnostiky Thomsonova rozptylu (TS – z ang. Thomson scattering) jsou na řadě 

světově významných zařízení zabývajících se fyzikou plazmatu měřeny základní veličiny 

popisující chování a stav plazmatu, a sice elektronová teplota a hustota elektronů přítomných 

v plazmatu. Jedinečnou schopností této diagnostiky je měření prostorového profilu zmíněných 

veličin, aniž by došlo k narušení stavu zkoumaného plazmatu. 

Bayesovské metody představují silný nástroj pro podrobnější analýzu diagnostických metod 
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3. Pokuste se využít dopředný model pro zpracování syntetických dat z předchozího 

úkolu pomocí Bayesovského přístupu 

4. Pokuste se do modelu zahrnout další diagnostiky elektronové hustoty (interferometrie) 
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Abstrakt: Diagnostika plazmatu pomocí Thomsonova rozptylu se používá na mnoha
světoznámých fúzních zařízeních. Tato diagnostika je unikátní ve svém oboru, neboť je
s ní možné měřit prostorové profily elektronové teploty a hustoty plazmatu bez narušení
jeho aktuálního stavu. Jednou z hlavních součástí každého diagnostického systému je soft-
ware pro zpracování a analýzu dat. Diagnostika plazmatu pomocí Thomsonova rozptylu
na tokamaku COMPASS využívá k výpočtu profilů teploty a hustoty software, který je
založený na fitovacích algoritmech. Součástí této výzkumné práce je představení nového
způsobu výpočtu profilů, který vychází z metod Bayesovské statistiky. Jsou představeny
dva modely, které jsou následně otestovány na umělých datech a srovnány s původním
zpracováním dat na tokamaku COMPASS.
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Optimization of the data processing from the Thomson scattering diagnos-
tics on the COMPASS tokamak using Bayesian methods
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Abstract: The Thomson scattering (TS) is an important plasma diagnostics that is used
on many fusion devices worldwide. It measures spatial profiles of electron temperature
and density of plasma without influencing its state and properties, which makes it unique
in its field. The main component of each diagnostic system is a data processing software.
To calculate the profiles, the TS diagnostic system on the COMPASS tokamak uses a soft-
ware based on curve fitting algorithms. In this thesis a different approach which utilizes
the methods of Bayesian inference is introduced. Two inference models are implemented,
tested on synthetic data and compared with the original COMPASS software.
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Introduction

Thermonuclear fusion is an ultimate source of energy, which powers the stars. While
the Sun fuses large amounts of hydrogen isotopes every day, replicating this physical
phenomenon in smaller scale on the surface of Earth is not a trivial task.

Current knowledge of controlled thermonuclear fusion indicates that the best approach
is to generate and confine high temperature plasma. Usually plasma composed of hydrogen
isotopes is used. Given enough time, the atoms from the high-energetic branch of the
Maxwell spectrum initiate a powerful enough collision that results in fusion of the colliding
particles and production of excess energy. There are several approaches to achieving the
confinement of high temperature plasma. A very promising seems to be the use of strong
magnetic fields which restrict the movement of the charged plasma particles and essentially
capture them. This branch of fusion research is referred to as the magnetic confinement
fusion. Most modern devices which utilize magnetic confinement are either tokamaks or
stellerators. Both consist of a vacuum vessel, which contains the plasma, and a large
number of strong electromagnets. Tokamaks induce current in the plasma in order to
achieve an optimal configuration of the magnetic field. In contrast, the stellerators do not
induce current and use unconventionally shaped electromagnets instead, which need to be
manufactured with very high precision.

The advancement of fusion research relies heavily on effective methods of plasma diag-
nostics. A disadvantage of numerous diagnostics is that they measure only local properties
(magnetic and electric probes) or volume/line integrated values (interferometry, spec-
troscopy, neutrons). The exception to this is the Thomson scattering (TS) diagnostics,
which directly measures full spatial profiles of plasma temperature and density. Plasma
profiles are very important in respect to the research of confinement modes.

This research task focuses on the data processing software of TS diagnostic system on
the COMPASS tokamak (R = 0.56 m, a = 0.18 m, BT = 0.8–2.1 T, κ = 1.6, plasma current
up to 400 kA, NBI (neutral beam injection) heating 2×400 kW). Current software is based
on curve fitting algorithms and calculates the temperature and density spatial profiles one
point at a time. However, in reality the points are not independent. According to the
general theoretical understanding of plasma in tokamak it is assumed that the profiles are
formed by continuous functions. Therefore all points in the plasma profile are spatially
correlated.

An alternative approach to analysing the TS data has been proposed. It employs the
statistical methods of Bayesian inference and Gaussian processes. The main objective is
to develop a more robust data processing routine that is able to incorporate the spatial
correlation of points. The result of profile inference would then be a continuous function
instead of a set of independent points.
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Chapter 1

Thomson scattering on the
COMPASS tokamak

Thomson scattering (TS) is an important method of plasma diagnostics commonly used on
many present-day fusion experiments that utilize the magnetic confinement approach to
controlled fusion (tokamaks, stellerators)[1, 2]. It is installed on the COMPASS tokamak[3]
and it is included in design plans for the new device COMPASS-U[4]. Typical application
of the TS diagnostics is to measure spatial profiles of electron temperature Te and density
ne with resolution in the order of 10 or even 1 mm. Temporal resolution is usually low
(hundreds of Hz).

1.1 Fundamentals of TS
Theory of Thomson scattering diagnostics is based on a scattering phenomenon of the
same name. Monochromatic light with well-defined spectral properties, typically a laser
beam, is scattered in plasma by free electrons. Resulting scattered spectrum is detected
and analysed. Because the electrons are moving, the scattered spectrum is deformed by
Doppler shifts as seen in Fig. 1.1. Assuming that the electrons are in thermal equilibrium,
the spectral intensity of scattered beam can be expressed as a function of Te and ne. Thus,
original values of Te and ne can be inferred from scattered spectrum. There are several
implementations of the TS diagnostics that use different type of lasers and/or spectroscopy
systems.

Main pitfall of TS is the low signal-to-noise ratio. The cross section of the TS phe-
nomenon σTS is a fundamental limiting factor. Combined with typical plasma density
values in tokamak it results in fairly weak signal. Subsequently, high-power lasers and
sensitive spectrum analysers need to be utilized.

The theory of TS is addressed in-depth in [6, 7]. More practical detailes aimed at the
implementation of a TS diagnostic system can be found in [5, 8].
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Fig. 1.1: An example of TS spectrum for a range of electron temperatures Te. θ is the
angle between the incident beam and the observer. Vertical dotted line at λ = 1064 nm
marks the laser line of Nd:YAG laser.[5]

1.2 Layout of TS
The layout of TS diagnostics on the COMPASS tokamak is visualized in Fig. 1.2. Inciden-
tal beams are produced by 4 Nd:YAG lasers and the spectrum analysis is conducted by a
set of 29 polychromators (5-channel). Scattered light is collected by two separate lenses
from two adjacent areas spanning along the z-axis above the equatorial plane. There is
the core TS and the edge TS area with 24 and 30 spatial points respectively. Note that
a duplexing technique is employed in order to analyse signal from 54 points while using
only 29 polychromators.

The edge TS has higher spatial resolution, 3.7 mm on average, compared to core TS,
9.9 mm on average. The actual distance between neighbouring points slightly varies de-
pending on the viewing angle of the collecting optics. The total observed spatial distance
is 336 mm.

The time resolution is given by the repetition rate of the lasers. Combined together
the 4 lasers offer a continual repetition rate of 120 Hz. Alternatively, the lasers can be
used in burst mode to perform fewer measurements with higher time resolution.
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Fig. 1.2: Layout of TS diagnostic system on the COMPASS tokamak.[9]

1.3 TS data processing
On the COMPASS tokamak, polychromators are used for spectral analysis of scattered
light. Each polychromator has 5 channels with APDs1 that detect light in 5 adjacent
spectral bands. Signal from each channel is integrated in time to retrieve the total detected
intensity during a single laser pulse. With additional knowledge about the diagnostic
system, which is acquired through a set of calibration processes, and theory of TS spectrum
it is possible to infer the Te and ne using a following relation

Vi = (G∆ΩT (λL)LQE)︸ ︷︷ ︸
system constants

(
1

hc/λL

dσTS

dΩ

)
︸ ︷︷ ︸

known constants

ne Elaser︸ ︷︷ ︸
const.

∫
φi(λ)

φi(λL)

S(λ;Te, θ, λL)

λL
dλ. (1.1)

Here Vi denotes the integrated intensity in one of the 5 channels that correspond to one
observed spatial point. Function S is the spectral density of TS. Although under specific
conditions an analytical formula of S exists, often it is reasonable to use an approximation
instead. The approximation that was used in this research task is presented in [10].
Integration parameter λ is the wavelength and constant λL is the known wavelength of
the laser source.

Contrary to the first impression, the relation (1.1) is rather simple because most of the
symbols that are present are either physical constants or system constants acquired from
calibrations. A more intuitive version of (1.1) can be formulated

Vi = αne

∫
βi(λ)S(λ;Te, θ, λL)dλ, (1.2)

where α represents all general constants and spatial-point-specific calibrations and βi
represents channel-specific calibrations. It is now obvious that Vi is function of Te and ne
and as such it can be used to infer the electron temperature and density.

1APD = avalanche photo diode, optical detector with high sensitivity.
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The calibrations of TS diagnostic system on COMPASS tokamak referenced in the
previous text include the absolute calibration, the spatial calibration and the spectral
calibration. During the absolute calibration, all constants of the system that are not
channel-specific are measured. The spectral calibration is tied to the spectral properties
of all polychromator channels. The spatial calibration is tied to the spatial properties,
e.g. the exact position of spatial points in the chamber and the angles of observation. In
addition to that, the laser pulse energy is measured.

More details about calibrations, the relation (1.1) and approximation of spectral density
S of TS spectrum that is used can be found in [11].
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Chapter 2

Bayesian inference

2.1 Motivation for Bayesian inference in experimental physics
Physical measurement is an inherently stochastic process and it requires the use of proba-
bility theory and statistics. The measured quantity can be modelled as a random variable
with unknown probability distribution. Data obtained through the measurement repre-
sents random samples of this probability distribution. The processes of estimation of the
results, that is the real value of the measured quantity and its error, is referred to as the
statistical inference.

Conventionally1 it is assumed that the measured quantity has normal distribution of
probability and repeated measurements increase the precision. The argument why such
assumption is reasonable is given by the central limit theorem. Then, arithmetic mean and
standard deviation can be used to estimate the measured value and error. The downside of
this approach is that the probability distribution, which is unknown, could be for example
deformed (asymmetric, bimodal) under the influence of a non-ideal measurement method.
In that case, systematically incorrect results are produced. Often it is a complicated
task to both indicate the deviation from normal distribution and to implement systematic
correction of results.

Bayesian inference offers an alternative approach. It is the process of using Bayesian
statistics to analyse data and deduce the properties (shape) of an underlying probability
distribution directly. In other words, the result of the inference is the probability distribu-
tion. Probability distribution contains the maximum information about a given stochastic
process and thus, in theory, it is possible to estimate the measured value and error more
rigorously. Apart from that, Bayesian inference also offers a straightforward way to in-
crease precision of results by incorporating additional information about the measurement
method and underlying physics of the measured object. Examples of application on plasma
diagnostics are presented in [1] and [2].

1In relation to the courses of statistics and experimental physics taught at FNSPE CTU in Prague.
Keywords: frequentist approach to statistics, the central limit theorem, arithmetic average and standard
deviation.
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2.2 Bayes’ theorem and terminology
The fundamental structure and philosophy of Bayesian inference is derived from the Bayes’
theorem, which can be stated as

P (A|D) =
P (D|A) · P (A)

P (D)
, (2.1)

where A represents the observed quantity and D represents data from experiment. Nota-
tion P (. . . ) and P (. . . | . . . ) refers to probability and conditional probability respectively.

The aforementioned structure of Bayesian inference is more obvious when the equation
(2.1) is dissected into separate terms. In this context only the first three terms, discussed
below, are important. The fourth term P (D), which resides in denominator, is the sum-
mary (marginal) probability distribution of all possible data values. It is a normalization
term and in practice it is automatically determined during the computation.[12, 13]

• Term P (A) is the prior distribution of probability or simply prior. It reflects any
information regarding the observed quantity A that is known prior to the experi-
ment. It should not be connected in any way to the data D or the measurement
process (likelihood). A simple example of a prior would be an order estimate for A.
A different model may incorporate results of a complex physical simulation instead,
while risking the fact that the simulation may not reflect the reality in whole. The
amount and validity of information that is provided affects both the final result and
its uncertainty. Choosing the correct prior for a given situation is a vital task.

• Term P (D|A) is the likelihood. Note that P (D|A) is a conditional probability: the
probability of measuring data D given a specific value of A. In other words, it refers
to a relation between D and A in the form of

D = f(A), or rather D ∼ distribution (f(A), . . . ) , (2.2)

where distribution is an unspecified probability distribution that represents the
stochastic character of the measurement process. The function f can be referred
to as the forward model of the measurement process. Forward model is a function
that accepts values of observed quantity A and yields corresponding data values
D. For example, in case of linear regression D = y = A · x the forward model is
f(A) = A · x, where the horizontal coordinates x are fixed known values. Contrary
to prior distribution, forward model is rarely subject to choice based on scientist’s
preferences. Often for a given problem there is only a limited number of options to
choose from and the main difference is usually their precision.

• Term P (A|D) is the posterior distribution of probability or simply posterior. Poste-
rior is a conditional probability, similar to likelihood but reversed: the probability
distribution of observed quantity A given that data D has been measured. It is the
result of the inference. The word posterior refers to the fact, that at this stage of
the inference process the experiment has been conducted and measured data D has
been considered.

Considering the new terminology, an intuitive interpretation of the Bayesian approach
can be formulated: An experiment is conducted with the motivation to update a prior belief
with new knowledge and form a more precise posterior belief. Here the new knowledge
includes both the measured data and the forward model. The emphasis is on the fact that

7



the inference is a process of updating beliefs or knowledge. An argument is often made
that this is equivalent to the natural decision making process of human mind2 and thus
more intuitive than other approaches to statistics.

In practice, the Bayes’ theorem (2.1) is hidden away as a part of the numerical algo-
rithms that sample or approximate the posterior distribution. When building an inference
model, the user instead comes into contact with the concepts of prior, likelihood and
posterior as it is described in the following section.

2.3 Calculating the posterior distribution
Aside from special cases, it is not possible to calculate full posterior distribution in fi-
nite time. Instead, a class of non-deterministic numerical algorithms called Markov chain
Monte Carlo (MCMC) is used. These algorithms are able to draw samples from an un-
known posterior distribution based on the known prior distribution, likelihood and data.
A draw of N samples is considered the approximation of a final result that converges for
N → ∞. Samples can be used to calculate posterior properties such as median, mean
and credibility interval or to visualize and plot the distribution. Popular MCMC sampling
algorithms include:

• Metropolis-Hastings, published 1970 [14]

• Hamiltonian or Hybrid Mote Carlo (HMC), published 1987 [15]

• No U-Turn Sampler (NUTS), published 2011 [16], extension of HMC

The NUTS sampler was used for posterior sampling in this research task.
An alternative to posterior sampling algorithms is offered by variational inference (VI)

algorithms. The purpose of VI algorithms is to infer an approximation of the posterior
distribution and then to draw samples of posterior from this approximation with high
efficiency. VI algorithms usually sacrifice the precision of results exchange for smaller
computational demand. Some algorithms may also sacrifice the guarantee of valid results
when applied to a completely general case. Therefore it is recommended to probe the
posterior using the more robust MCMC algorithms in order to verify applicability of a
specific VI algorithm.

2.4 Introduction to the PyMC3 library for Python
The MCMC sampling algorithms and related advances in this field both popularized the
Bayesian approach to statistics and inspired a number of publicly available computa-
tional platforms for Bayesian inference. Notable instances of such platforms include the
Stan[17] (specialized programming language), Pyro[18] (library for Python language) and
PyMC3[19] (library for Python language). The PyMC3 library was decided to be the best
fit for the purposes of this research task. One of the main reasons being its both detailed
and accessible documentation that also includes a variety of introductory materials and
examples.

2Consider a Constitution class starship on its way to the Federation-Romulan border to check-up on
a monitoring outpost that fell silent. Captain Kirk keeps an open mind and thinks that a malfunction is
more probable than a Romulan attack. Next, a contact is lost with two more outposts and a third one
broadcasts emergency signal. Captain Kirk updates his believes and raises red alert.
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2.4.1 Constructing the inference model

The general concept of PyMC3 is to offer a friendly Python interface that allows the user
to specify the inference model. The computation itself is implemented using optimalized
background libraries and on-the-fly compiled C code and therefore avoids any computa-
tional inefficiency related to Python. Each model is specified by a set of parameters (the
unknowns, e.g. Te and ne) and an observed variable (the measured quantity, e.g. channel
intensity Vi), while the forward model connects them together. A probability distribution
needs to be assigned both to parameters and to the observed variable because they are
all random variables. To recall the Bayesian terminology, the distribution of parameters
and observed variable corresponds to the prior distribution and the likelihood respectively.
Finally, the observed variable requires the actual measured data. An example of a linear
regression model defined in PyMC3:
import pymc3 as pm
import numpy as np

# Simulating data from an experiment :
x = np . array ( [ 1 , 2 , 3 , 4 , 5 ] )
data = np . array ( [ 1 . 1 1 , 1 .23 , 1 .30 , 1 .39 , 1 . 5 5 ] )
data_err = np . array ( [ 0 . 0 1 , 0 .02 , 0 .01 , 0 .02 , 0 . 0 3 ] )

# The forward model f o r l i n e a r r e g r e s s i o n
def f (A, B) :

return A∗x + B

with pm. Model ( ) as model :
# Model parameters ( p r i o r ) , s l ope and i n t e r s e c t i o n
var_A = pm. Uniform ( ’A’ , lower=−5, upper=5)
var_B = pm. Uniform ( ’B ’ , lower=−10, upper=10)

# Observed var i ab l e ( l i k e l i h o o d )
y = pm. Normal ( ’y ’ , mu=f (var_A , var_B) , sigma=data_err , observed=data )

2.4.2 Sampling the posterior

When a model has been specified, the posterior distribution can be sampled and the results
acquired. In PyMC3 framework it means the following:
with model :

t race = pm. sample ( draws=2000, tune=1000, chains=8)
# As soon as the sampling process i s f i n i shed , the var i ab l e ’ t race ’
# w i l l contain samples from p o s t e r i o r d i s t r i b u t i o n o f ’A’ and ’B ’ ,
# where ’A’ i s the s lope and ’B ’ i s the i n t e r s e c t i o n

The function sample() accepts various arguments that control the sampling process. List-
ing the three most important arguments:

• draws — Number of samples to draw from the posterior distribution per chain. A
reasonable amount is 2000 for a simple model and 10 000 for a complex model.

• tune — Number of tune samples that are used to tune the algorithm. A reasonable
amount is for example a half of draws.

• chains — Number of computational chains. Chains can be run in parallel, utilizing
the efficiency of a multi-core CPU. It is recommended to compute at least 2 chains
so that the results can be compared.
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It is good practice to always check and diagnose results of posterior sampling. One
common issue that can occur during posterior sampling is a divergent sample. If a di-
vergent sample is present, the results should be deemed unreliable. Another issue is the
autocorrelation of samples. When high autocorrelation between samples is detected, it sig-
nalizes low information density and therefore low effective sample size of the result. Both
of these checks are calculated and logged by PyMC3 automatically, there are, however,
numerous other indicators and tests for model and results diagnostics.[20]

Sampling issues can be countered either by increasing the tune parameter or by revising
the model: its structure, the choice of parameters and their prior distributions.

2.4.3 Using variational methods to approximate the posterior

PyMC3 also implements the variational methods mentioned in section 2.3. On of the meth-
ods available in the library is the Automatic differentiation variational inference (ADVI)
that uses an approximation based on single-mode normal distribution. Another is the
Stein variational gradient descent (SVGD). While the methods (mainly ADVI) were suc-
cessfully utilized in order to acquire fast results, in general they go beyond the scope of
this research task.

2.5 Gaussian processes
Typically, the domain of Bayesian inference is the number-space. The use of Gaussian
processes (GP) extends this domain to the function-space, f : R → R. To clarify, instead of
inferring electron temperature Te at discrete spatial points, it is possible to infer continuous
spatial profile Te = Te(z) from the same data. The advantage of this approach is that
additional information, more specifically the correlation between points in the same spatial
profile, is incorporated and that it is possible to predict the function values at new points.
The PyMC3 library offers a convenient implementation of GP.[19]

Gaussian processes are used similarly to any other prior distribution. In theory they
are represented by a Multivariate Gaussian distribution of infinite size that is collapsed
(marginalized) into a finite size equal to the number of data points. A Multivariate
Gaussian, and therefore GP as well, is defined by a mean vector and a covariance matrix.
The combination of mean and covariance determines the properties of functions that are
sampled from the GP prior. While the mean can be used to specify a general trend or to
provide correct scale, the main properties are influenced by the covariance.[13]

2.5.1 Kernels

In the context of GP, covariance matrix is usually constructed using a kernel, sometimes
referred to as the covariance function. Kernel can be naively described as a symmetric
weighing function that accepts two inputs and returns a positive value

k : X× X → R+, where X is an unspecified input space (2.3)

The output value can be interpreted as a measure of similarity between the two inputs.
Notice that if a kernel measures the similarity of inputs inversely proportional to their dis-
tance, it actually describes a property analogous to the continuity of a function. Through-
out the years, many different kernels have been invented describing different classes of
functions. One of the main features that a kernel can determine is the order of differentia-
bility — the smoothness. More detailed theoretical introduction to the concept of kernels
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as covariance functions of GP can be found in [21, Chapter 4]. A list of kernels selected
for the purpose of this research task is presented:

• Exponentiated quadratic (Gaussian), Fig. 2.1,

k(x, x′) = exp
[
−(x− x′)2

2`2

]
(2.4)

where the parameter ` defines the length-scale.
The exponentiated quadratic kernel (EQ) describes a class of infinitely differentiable
functions. According to [21] it has been argued that such strong smoothness assump-
tions are unrealistic for modelling many physical processes and the Matérn class is
recommended instead.

• Matérn ν = 5
2 , Fig. 2.2,

k(x, x′) =

(
1 +

√
5(x− x′)2

`
+

5(x− x′)2

3`2

)
exp

[
−
√
5(x− x′)2

`

]
(2.5)

and ν = 3
2 , Fig. 2.3,

k(x, x′) =

(
1 +

√
3(x− x′)2

`

)
exp

[
−
√
3(x− x′)2

`

]
, (2.6)

where in both equations parameter ` defines the length-scale.
The Matérn kernel uses an additional parameter ν to describe a class of functions
which are k-times differentiable if and only if ν > k. For ν → ∞ it becomes the EQ
kernel. The general defining formula of this kernel, which can be found in [21], is
complex, however, for special cases of ν it can be significantly simplified. Two such
cases, ν = 5

2 and ν = 3
2 , are presented above. The examples in Fig. 2.2 and Fig. 2.3

visibly reflect more diverse features than the infinitely smooth EQ kernel in Fig. 2.1.

• Exponential, Fig. 2.4,

k(x, x′) = exp
[
−||x− x′||

2`2

]
(2.7)

where the parameter ` defines the length-scale.
The exponential kernel is in fact another special case of the Matérn kernel, where
ν = 1

2 . According to the statement about the relation of ν and the differentiability,
it describes a class of continuous but not differentiable functions. Such assumptions
about smoothness appear to be very conservative and possibly unrealistic in the
context of many physical processes. It can be seen from the example in Fig. 2.4 that
the functions are comprised of very sharp peaks.

Note that kernels often have one or more parameters that need to be specified, e.g. the
lengthscale `. Instead of assigning a fixed value, these parameters are usually regarded as
additional unknowns of the model and their own prior distribution is specified. Because
they parametrize the prior distribution of the original parameters, they are sometimes
referred to as the hyperparameters.

In order to describe functions with more complex properties, it is possible to combine
several kernels (covariance matrices) with the use of following operations:
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• k(x, x′) = k1(x, x
′) + k2(x, x

′) … element-wise addition

• k(x, x′) = k1(x, x
′) · k2(x, x′) … element-wise multiplication

• k(x, x′) = η2 · k1(x, x′) … multiplication by a positive scalar

The scalar multiplication should be always utilized to introduce a scaling hyperparameter η
as an additional degree of freedom. The kernels are normalized by default.

2.5.2 Gaussian processes with positive domain

As was mentioned before, GP are represented by a Multivariate Gaussian distribution
which is defined over (a vector of) all real numbers. In some cases, strictly positive values
could be required. To obtain a GP prior defined over positive numbers it is possible to
apply exponential transformation and use the GP prior in logarithmic space:

Te ∼ exp [GP(~µ,Σ)] instead of Te ∼ GP(. . . ), (2.8)

where ~µ is the mean vector and Σ is the covariance matrix.
The exponential transformation causes several notable side effects. Functions charac-

terized by the kernels listed above resemble fluctuations around mean that are symmetri-
cally distributed. The transformation deforms them so that their amplitude above mean
is greater than below mean (see Fig. 2.1). It is caused by the fact that the absolute fluc-
tuations in logarithmic space are transformed into relative fluctuations in respect to the
mean value. Therefore, if a non-constant mean were to be used, additional deformation
would appear. The transformation also affects the hyperparameters, namely the scaling
factor η. It is convenient to redefine it so that it scales the kernel in following form:

[log(1 + η)]2 · k(x, x′). (2.9)

In this form the η ∈ (0,+∞) correctly parametrizes the relative scale.
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Fig. 2.1: Functions sampled from GP prior based on the exponentiated quadratic kernel
(2.4). Transformed from log-space, see section 2.5.2.

Fig. 2.2: Functions sampled from GP prior based on the Matérn kernel (2.5) with ν = 5
2 .

Transformed from log-space, see section 2.5.2.
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Fig. 2.3: Functions sampled from GP prior based on the Matérn kernel (2.6) with ν = 3
2 .

Transformed from log-space, see section 2.5.2.

Fig. 2.4: Functions sampled from GP prior based on the exponential kernel (2.7). Trans-
formed from log-space, see section 2.5.2.
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Chapter 3

Synthetic TS data

3.1 Source of synthetic profiles
In order to generate synthetic TS data, a pair of electron temperature Te and electron
density ne profiles is required. The first method that can be used to generate the profiles
is to simulate plasma discharge in tokamak using available numerical models. Despite
the fact that this approach would probably produce more precise and authentic results,
it is unnecessarily complex and time demanding. Instead, an alternative approach was
chosen, which utilizes the models that are used for fitting of TS profiles and determining
important parameters.

3.1.1 Model for TS profile fitting

A model for TS profile fitting that is currently adopted on the COMPASS tokamak is
presented in [22]. It is tailored for H-mode temperature and density profiles. The H-mode
is a mode of high plasma confinement that can be achieved on a tokamak with divertor
configuration and supersedes the less effective L-mode. Currently, it is considered one
of the main building blocks of successful tokamak fusion. A characteristic phenomenon
of H-mode is the edge transport barrier, which decreases the diffusion of particles from
plasma and counters various instabilities. This results in a modified shape of the plasma
pressure profile, which appears to be raised up on a pedestal as seen in Fig. 3.1. The
term pedestal is often used in reference to this concept. The shape of pressure profile also
influences the temperature and density profiles in a similar manner.

The aforementioned TS profile fitting model consists of two main components. The
first component is the function Fped, which is based on modified hyperbolic tangent and
describes the pedestal and the edge transport barrier using 5 independent parameters.
The second component is an exponential function, which describes the plasma centre and
has 3 parameters. The complete formula can be written as follows

F (r, a, b) = Fped(r, b) +
{
aheight − Fped(r, b)

}
· e−

(
r

awidth

)aexp

Fped(r, b) =
bheight − bSOL

2

{
mtanh

(
bpos − r

2bwidth
, bslope

)
+ 1

}
+ bSOL

mtanh(x, bslope) =
(1 + bslopex)ex − e−x

ex + e−x
,

(3.1)
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Fig. 3.1: Sketch of H-mode plasma profile and pedestal with comparison to L-mode.[23]

where parameters aheight, awidth and aexp describe the plasma centre and parameters
bheight, bSOL, bwidth, bpos, bslope describe the pedestal. The precise interpretation of these
parameters, which is discussed in [22], is not important in this context. An example plot
of the function (3.1) is in Fig. 3.2.

The idea is that by generating a set of 16 parameters, 8 for temperature profile an 8 for
density profile, it is possible to produce synthetic profiles which have properties similar to
those of the real plasma profiles. However, note that the values of the parameters need
to be restricted based on empirical experience and archived data in order to produce the
expected results. Example of generated profiles is in Fig. 3.3.
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Fig. 3.2: An example of temperature Te and density ne profile function (3.1).

Fig. 3.3: A number of synthetic temperature Te and density ne profiles generated using
the fitting function (3.1).
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3.2 Simulating profile fluctuations
The fitting model (3.1) is an empirical approximation and captures only a limited subset
of components that form a real plasma profile. In other words, better authenticity can
be possibly achieved by introducing small continuous variations or fluctuations to the
profile, which disturb its unrealistic smoothness and provide a crude imitation of stochastic
components.

Gaussian processes (GP) and the multivariate normal, described in section 2.5, are
well-suited for this purpose.1 As proposed in section 2.5.2, an exponential transformation
can be utilized to sample from classes of strictly positive functions. Then the fluctuation
of the profile can be introduced as a relative multiplicative factor f(z)

Ã(z) = f(z) ·A(z), (3.2)

where A(z) is the original profile and Ã(z) is the modified profile with fluctuations.
GP requires a kernel and a mean function. Because the fluctuation modifier f(z) is a

relative factor, the mean is set to 0 in log-space, which results in 1 or 100 % in the original
space. The kernel recommended for this purpose is Matérn 3

2 or Matérn 5
2 because of

their convenient degree of smoothness. Both kernels are parametrized by the length-scale
parameter ` and scaling factor η, which further specify the properties of the resulting
fluctuations. Example of profiles with Matérn 3

2 simulated fluctuation is in Fig. 3.4.

Fig. 3.4: An example of a synthetic temperature Te and density ne profile with simulated
fluctuations (5 random samples).

1It could be argued that using a part of the inference model, the GP, to generate data is self-serving
and logically must result in better apparent performance of the model. However, the alternative is to
use somewhat more artificial methods, e.g. white noise, which are not particularly grounded in general
physical understanding of the problem.
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3.3 Simulating measurement noise
A measurement is always affected by noise and therefore a noise component should be
incorporated into the synthetic data as well. Note that this refers to the intensity data
of TS diagnostics that is calculated using the forward model (1.1), rather than the profile
data discussed in the previous text. The simplest method to incorporate noise is to select
a suitable probability distribution, specify its parameters and sample the noised data from
it.

Usually the universal candidate is the normal distribution (A.1), where the mean pa-
rameter µ represents the original data value and the standard deviation σ specifies the
magnitude of the noise. However, the data of TS diagnostics is strictly positive, while the
normal distribution produces real values. The requirement is fulfilled by the log-normal
distribution (A.3), which can be parametrized by mean µ and standard deviation σ, see
(A.4) and (A.5), and applied in the same manner.

3.4 Overview of generated datasets
Based on empirical knowledge about the fitting model (3.1) and archived data, 10 sets of
the fitting parameters a[...], b[...] that describe H-mode plasma profiles of Te and ne were
generated. The profiles were scaled according to the z axis of the COMPASS tokamak
and sampled at spatial points of the TS diagnostics. Then the synthetic TS data, i.e.
the integrated intensity per channel, was derived using the TS forward model (1.1) and
calibration data of an arbitrarily chosen discharge (#20555). Each profile was processed
with 3 different configurations of the data generator resulting in 3 datasets:

• Dataset 1: no noise and no fluctuations

• Dataset 2: measurement noise
Measurement noise is 5 % relative error + 0.005 absolute error.

• Dataset 3: measurement noise + profile fluctuations
Measurement noise is 5 % relative error + 0.005 absolute error.
The profile fluctuations are based on Matérn 3

2 kernel in log-space. Two compo-
nents are used, the long-scale component {` = 0.1 m; η = 10 %} and the short-scale
component {` = 0.02 m; η = 5 %}.

Notice that the magnitude of simulated measurement noise has a small absolute com-
ponent, in addition to the relative error. It sets a lower bound for the error, which is
inherent for any measurement device. The selected value 0.005 is roughly equal to the
resolution digitalized signal from polychromator channels.

3.5 Quantifying the performance of inference method using
synthetic data

The sole purpose of generating synthetic data is to assess the performance of different
inference methods. That is accomplished by comparing the inferred Te and ne profiles
with the original profiles that were used as a source for the data. To compare two 1-
dimensional spatial profiles, it is necessary to select a norm.
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In the case of continuous functions f1 = f1(z) and f2 = f2(z), the L2 norm of their
difference ∆f = f2 − f1

||∆f || =
(∫

R
|∆f(z)|2 dz

)1/2

(3.3)

is often employed in mathematics to quantify their similarity. Because the profile data
is assumed to be a finite discretization of continuous functions, i.e. f̃1 = f̃1(zi) and
f̃2 = f̃2(zi) where i = 1, 2, . . . , n; n ∈ N, an analogous norm was derived based on a
discrete approximation of integral

∣∣∣∣∣∣∆f̃
∣∣∣∣∣∣ = ( n∑

i=1

∣∣∣∆f̃(zi)
∣∣∣2 · (∆z)i

zn − z0

)1/2

, (3.4)

where z1 < z2 < · · · < zn is the set of n ∈ N of spatial points (on the z axis) which define
the discretization. Notice the expression

(∆z)i
zn − z0

,

which assumes the role of a weighing factor based on the distance between points. It is
important to include this factor in order to compensate for the different spatial resolution
of the core TS and the edge TS area, which is discussed in section 1.2. If the variations
caused by the viewing angle are neglected, then the weighing factor can be approximated
as

(∆z)i =

{
3.7 mm, if zi belongs to the edge area
9.9 mm, if zi belongs to the core area

zn − z0 = 336.0 mm
(3.5)

A simple difference of the original synthetic profile and the inferred profile
∣∣∣∣∣∣∆f̃

∣∣∣∣∣∣ is un-
suitable for an objective statistical summary, because it logically depends on the synthetic
profile itself. To resolve this, the difference needs to be normalized by an arbitrary factor
ξ derived from the profile data (original or inferred). The norm of normalized difference∣∣∣∣∣

∣∣∣∣∣∆f̃

ξ

∣∣∣∣∣
∣∣∣∣∣ (3.6)

can then be applied on profiles inferred from the synthetic datasets (see section 3.4) to
summarize and assess the inference method. For this purpose, two summarizing indicators
were devised that focus on the precision of results and error estimation:

3.5.1 Indicator 1: Precision of the result

The normalizing factor ξ is the maximal value in the synthetic profile f̃synth.

ξ(1) = max
{
f̃synth.(zi)|i = 1, 2, . . . , n

}
. (3.7)

This indicator describes how similar is the inferred profile and the original synthetic profile.
The value of the norm (3.6) itself does not have any specific absolute scale in this case, but
it can be used to compare different inference methods or their performance on different
datasets.
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3.5.2 Indicator 2: Precision of error estimate

Another option is to select the estimated error at given point as the normalizing factor ξ.
An error is usually estimated as the standard deviation σ. However, in Bayesian statistics
the highest density interval (hdi), which is more universal, is used instead. An equivalent
of the standard deviation is the half of a 68 % hdi, labelled as σ68

ξ(2) = σ68(zi) (3.8)

This indicator shows whether the error estimate σ68 is reasonable. If a value of the norm
(3.6) with this factor ξ(2) is close to 1, then the difference between the original and the
inferred profile is on average approximately σ68. If the value is significantly lower or higher
than 1, the errors are over- or underestimated respectively.
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Chapter 4

Results: Point inference

The topic of this research task is the process of inferring electron temperature Te and
density ne spatial profiles from data produced by Thomson scattering diagnostics on the
COMPASS tokamak. Two inference models of different complexity were proposed and
implemented. The first model, described in this chapter, is less complex and implements
inference of the spatial profile on a per-point basis without assuming any correlation
between the points. Its purpose is to emulate the process of the conventional regression
method, which is currently used on the COMPASS tokamak, with the use of the Bayesian
inference.

4.1 Model description
The unknown of this model is a pair of Te and ne values at several spatial points where
data was measured. Because no spatial correlation between the points is assumed, the
complexity of the model is effectively lowered from the 1-dimensional inference of a profile
to the 0-dimensional inference of a single point.

4.1.1 Prior distribution

The prior distribution of Te and ne is the half-normal distribution with σ parameters equal
to arbitrarily chosen order-of-magnitude estimates

Te ∼ half -normal(σ = 1000 eV) (4.1)
ne ∼ half -normal(σ = 1020 m−3) (4.2)

Half-normal distribution, see appendix A.1, is considered to be a weakly-informative prior
implying that it maintains the objectivity of the inference. Another property of this
distribution is its positive domain, which is required by the physical context of temperature
and density. Apart from half-normal distribution, other variants were considered including
half-Cauchy and log-normal distributions, see Fig. 4.1 for comparison. While the half-
normal distribution was selected as the most appropriate, preliminary testing had showed
that all of the considered options produce very similar results.
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Fig. 4.1: Comparison of different options for prior distribution of Te in the point model.
The plot shows that the half-Cauchy distribution constrains large Te values less than
the half-normal and that the log-normal distribution significantly disadvantages near-zero
values.

4.1.2 Likelihood

The second building block of a model, the likelihood, is defined by the log-normal distri-
bution with transformed parameters µ, σR as specified in appendix (A.3)

Vi ∼ log-normal

(
µ = fTS (Te, ne) , σR =

D
(err)
i
Di

)
. (4.3)

Here fTS = fTS (Te, ne) refers to the forward model of TS diagnostics specified by the
equation (1.1) and employed by the regression method currently used on the COMPASS
tokamak. Vi is the intensity in the i-th polychromator channel (see section 1.3) as a
random variable, while Di and D

(err)
i refer to the actual data: the measured value of Vi

and its error estimate respectively. Although the normal distribution is a popular universal
choice, the log-normal distribution was chosen instead to better reflect the fact that the
intensity values Vi are always positive. This brings more stability to the algorithm. Apart
from log-normal, several other distributions with positive domain were considered, see
Fig. A.4 for comparison.

4.1.3 Inference algorithms

As a result of low complexity of the model, it was possible to utilize the posterior sam-
pling method NUTS to infer the results without the need of an unreasonable amount of
computational time. It was observed that the variational method ADVI brings only small
increase in computational speed in this case.

4.2 Inference on simulated data
The inference model was tested on 3 synthetic datasets, which are described in chapter
3.4. The two indicator quantities from section 3.5 were used to compare inferred profiles

23



with the original synthetic profiles. The results from each dataset were summarized using
mean and standard deviation and plotted to graphs, see Fig. 4.2.

Fig. 4.2: Summarized performance of inference model point when applied on synthetic
datasets 1, 2 and 3. The top plot describes the difference from the original synthetic
profile. The bottom plot shows, whether the errors are over- or underestimated. See
section 4.2 for more details.

Note that only a subset of 44 spatial points (out of 54) was used for calculating these
statistics in order to avoid the far-edge area, where the signal is very low. Because of the
low signal the inference method loses reliability. This is discussed in detail in section 6.3.
Apart from that, the graphs in Fig. 4.2 seem to indicate that the inference method esti-
mates its errors well (values of indicator 2 are close to 1.0) and is able to approximate the
synthetic profile. Both indicators are very small in the case of dataset 1 (no measurement
error) as expected. The effect of the profile fluctuations added in dataset 3 is inconclusive
with respect to the estimated standard deviation of the indicators.

A general comparison with the other inference method and with the data processing
routine used on the COMPASS tokamak is in Fig. 6.1.

4.3 Inference on data from database
In addition to synthetic data, the inference model was also applied on archived data from
three standard shots on the COMPASS tokamak (shots # 20447, # 20555 and # 20664).
An example of inferred temperature and density profile is in Fig. 4.3. Results of the
COMPASS data processing routine are added for comparison.

The example in Fig. 4.3 illustrates that the results of the Bayesian method and the
COMPASS processing routine are very similar in respect to the density profile. Minor
differences usually appear in the core area of the temperature profile. In addition to that,
very low density in the far edge area often causes significant deviations. This is further
discussed in section 6.3.
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Fig. 4.3: Plasma temperature and density profile inferred from archived data from the
COMPASS database (CDB) using the point inference model, section 4. Hdi = highest
density interval.
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Chapter 5

Results: Profile inference with
Gaussian processes

This chapter is focused on the description and implementation of the second model. In
comparison with the first model (Point inference), it adds the complexity of spatial cor-
relation between points of the profile. The motivation is to include more information
in the process of inference. The correlation is specified using an advanced type of prior
distribution that is based on Gaussian processes.

5.1 Model description
The unknown of this model is a continuous 1-dimensional spatial profile of Te and ne.

5.1.1 Prior distribution

The prior distribution is implemented as Gaussian processes (GP), see section 2.5. Be-
cause both temperature and density can be expected to be always positive, the exponential
transformation (2.8) is utilized. The mean vector ~µ is specified by a constant generating
function µ = µ(z) in order to provide a simple order-of-magnitude estimate for the algo-
rithm similarly to (4.1) and (4.2)

µTe(z) = 100 eV (5.1)
µne(z) = 1019 m−3 (5.2)

The Matérn 3
2 kernel (2.6) is used for the covariance matrix Σ. Illustrative examples

of functions sampled from a GP distribution with exponential transformation described
by this kernel and a constant mean function can be seen in Fig. 2.3. The covariance is
parametrized by the length-scale parameter ` and the transformed scale parameter η, see
(2.9).

Because of the exponential transformation of GP, the covariance reflects the relative
behaviour of the functions, while their absolute scale is determined by the mean. It
is expected that the general relative behaviour of Te and ne profiles is comparable and
thus, for convenience, identical weakly-informative prior distributions can be used for
hyperparameters of both covariances ΣTe and Σne

` ∼ gamma (µ = 0.1 m, σ = 0.05 m) (5.3)
η ∼ half -Cauchy (β = 1000 %) (5.4)
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The priors are plotted in Fig. 5.1. Their parameters were chosen based on empirical
knowledge about the kernel (see Fig. 2.3) and plasma profiles on the COMPASS tokamak.

Fig. 5.1: Prior distribution of hyperparameters ` and η of the GP prior in the profile
model, see chapter 5.

5.1.2 Likelihood

The likelihood is identical to that of Point inference model, which was the combination of
log-normal distribution (4.3) and the forward model specified by (1.1). According to the
semantics of Bayesian models, the likelihood describes the experimental method which is
the same for both models (the same data is used). The sole difference between the models
is in the prior knowledge and expectations about Te and ne profiles, which is encoded in
the prior distributions.

5.1.3 Inference algorithms

Models based on GP bring additional computational complexity. In this case, the com-
putational time required by the posterior sampling method NUTS varied significantly
depending on the presence of data points with low signal-to-noise ratio, i.e. the points
where density ne was low. Consequently, variational method ADVI was employed for the
purpose of the larger-scale statistics on synthetic data.

5.2 Inference on simulated data
In analogy to section 4.2, the profile inference model was also tested on the 3 synthetic
datasets from chapter 3.4 with the use of indicator quantities from section 3.5. The subset
of 44 (out of 54) spatial points was also used in order to avoid the known negative effects
low signal-to-noise ratio, which are discussed in 6.3. The summarized results are plotted
in Fig. 5.2.
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Fig. 5.2: Summarized performance of inference model profile when applied on synthetic
datasets 1, 2 and 3. The top plot describes the difference from the original synthetic
profile. The bottom plot shows, whether the errors are over- or underestimated. See
section 4.2 for more details.

The results in Fig. 5.2 show that the profile model estimates the errors well, because
the indicator 2 is close to value 1.0. The difference from the synthetic profile is slightly
larger in case of the temperature Te. However, compared to the point model results shown
in Fig. 4.2, the profile model performs better.

A general comparison of both inference methods and the data processing routine used
on the COMPASS tokamak is in Fig. 6.1.

5.3 Inference on data from database
The profile inference model was also applied on archived data from three standard shots on
the COMPASS tokamak (shots # 20447, # 20555 and # 20664). An example of inferred
temperature and density profile is in Fig. 5.3. Once again, the unstable edge behaviour is
present. Results of the COMPASS data processing routine are added for comparison.

As was discussed in section 2.5, the GP prior distribution relates to the space of func-
tions and therefore in theory the true result is a function. The results shown in Fig. 5.3
can be thought of as the estimation of several function values at points where the data
was measured. The information about the function itself is contained in the posterior
distribution of parameters of the covariance matrix ` and η. It is possible to utilize this
information and process the results further in order to robustly predict posterior distribu-
tion of the function values at different spatial points, for example in between the original
points. This is referred to as the posterior predictive sampling, see [20]. Profiles from
Fig. 5.3 that were predicted at 200 new equidistant points are shown in Fig. 5.4.

The highest density interval of profiles in Fig. 5.4 features a distinctive wave-like mod-
ulation, which reflects the fact that the uncertainty rises with the distance from points
where the data was measured. The magnitude of this effect depends on the length-scale `
parameter of the GP kernel with respect to the distance between the measurement points.
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Fig. 5.3: Plasma temperature and density profile inferred from archived data from the
COMPASS database (CDB) using the profile inference model, section 5. Hdi = highest
density interval.
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Fig. 5.4: Prediction of temperature and density profile at 200 new z coordinates based on
inference from Fig. 5.3. Hdi = highest density interval.
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Therefore the points in edge area are far less affected.
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Chapter 6

Discussion

6.1 The development of the models
Sections 4 and 5 present the final form of the models. However, numerous alternatives
were explored and tested.

The likelihood for both models was defined by the log-normal distribution. It was
selected because of its positive domain and because its properties are similar to those
of normal distribution when σ � µ. The positive domain is in compliance with the
fact that the TS data is composed of positive light intensity values. In comparison to the
likelihood based on normal distribution, the posterior sampling algorithm was more stable,
i.e. divergent samples were produces less often. Despite that, several preliminary test-
results indicated that the normal distribution is not afflicted by the edge instability (see
section 6.3) as much as the log-normal. Therefore the properties of log-normal distribution
seem to be the cause of the instability.

The GP covariance of the profile model is defined using the Matérn 3
2 kernel. As an

alternative, the exponentiated quadratic (EQ) was tested. However, it was very unstable
and produced significant amount of divergent samples. To counter that, a combined
covariance given by a sum of these two kernels was also introduced. However, it was
discovered that the EQ kernel is usually overpowered by the Matérn kernel and does not
contribute to the result.

6.2 Performance of the inference models based on the syn-
thetic datasets

Comparison of performance of both inference models and the software used on the COM-
PASS tokamak is plotted in Fig. 6.1. The performance is quantified by the two indicators
defined in section 3.5.

Based on the indicator 2 (bottom plot) it can argued that the estimation of errors
does not present an issue for any of the models. The difference from the synthetic profile
described by the indicator 1 (top plot) is mostly constant in the case of density ne. This is
expected because in the forward model (1.1) the density holds the role of a simple linear
factor and therefore it does not pose problems for the algorithms.

By comparing the temperature Te profiles it can be claimed that the spatial correlation
of points in the profile model does improve its performance over the point model. However,
the COMPASS software appears to perform better. It is not conclusive whether the
Bayesian approach offers less precision or whether the models simply require more tuning
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Fig. 6.1: Comparison of performance of the two inference methods, shown separately
in Fig. 4.2 and Fig. 5.2, and the software used on the COMPASS tokamak. The top
plot describes the difference from the original synthetic profile. The bottom plot shows,
whether the errors are over- or underestimated.
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and longer calculation (i.e. more posterior samples). Note that the results for profile
model were calculated using the approximative algorithm ADVI because the full posterior
sampling was deemed to be unnecessarily time intensive for this purpose.

6.3 The unstable behaviour in edge areas with low signal-
to-noise ratio

Both Bayesian models are afflicted with unstable behaviour in areas, where the signal-to-
noise ratio is very low (usually far edge area). This results in significant deviations in the
temperature profile as can be seen in Fig. 4.3, Fig. 5.3 and Fig. 5.4. It also causes divergent
samples. The deviations can be observed both in results inferred from COMPASS database
data and from synthetic data with high simulated measurement error.

In section 6.1 it was discussed that the properties of log-normal likelihood could rep-
resent the main cause. If that is the case, new likelihood options should be researched
and tested. Although it is possible that all conventional likelihoods with positive domain
share a similar property that causes this undesirable phenomenon.

Finally, the situation can be approached more pragmatically by discarding all points
with signal-to-noise ratio below certain threshold. It can be argued that data with low
signal-to-noise does not have a potential to produce reliable results in general.

6.4 Processing archived data from COMPASS database
Both models were successfully applied on the data from COMPASS database, the results
are show in Fig. 4.3, Fig. 5.3 and Fig. 5.4. Apart from the edge behaviour discussed
in (6.3), both models produce results in good agreement with the COMPASS software.
Minor deviations appear mainly in the temperature profile. The difference might be caused
because of a stray-light compensation algorithm, which is implemented in the COMPASS
software but not in the Bayesian models.

In summary, the models are from a technical standpoint prepared for use on the data
from COMPASS database. They are, however, in an experimental state and a further
research is required to guarantee their robustness and precision.

6.5 Further development
The main purpose of the point model was to provide an additional reference point when
comparing the profile model with COMPASS software. The only motivation for its further
development is the potential research of alternative likelihood options discussed in section
6.3.

The main focus is the profile model. The current conclusion derived from results in
Fig. 6.1 is that it lacks precision in respect to the temperature profiles. First step would
be to confront the edge instabilities described in section 6.3. Improvement can also be
achieved through an empirical research of optimal settings for the posterior sampling
algorithm (number of tuning steps and sample draws).

In addition, the statistical survey of model performance (section 6.2) should be ex-
tended in volume in order to provide more conclusive results that can be used to steer the
further research.
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Conclusion

A brief introduction to the theory of Thomson scattering (TS) and its application in high
temperature plasma diagnostics was presented in chapter 1. The TS forward model (1.1)
was introduced and the fundamental components TS diagnostic system on the COMPASS
tokamak were described.

The concept of Bayesian inference and its application for data analysis was presented
in chapter 2. The library PyMC3 for the Python language that implements a framework
for constructing inference models and posterior sampling algorithms was introduced. A
description of Gaussian processes and their function was offered.

The model for fitting of H-mode electron temperature and density profiles on the COM-
PASS tokamak was utilized to produce 3 synthetic datasets of TS data (chapter 3). Two
Bayesian inference models, the point model and the profile model, were formulated. The
point model was less complex and roughly emulated the native software on the COM-
PASS tokamak. The profile model incorporated spatial correlation between the points of
the profile with the use of Gaussian processes. The models were described in detail in
chapters 4 and 5. The synthetic datasets were utilized to compare performance of these
models and the native COMPASS software, see Fig. 6.1. An example of inference of data
from the COMPASS database was presented as well, see Fig. 4.3, Fig. 5.3 and Fig. 5.4.

In conclusion, two Bayesian models were successfully implemented and tested on both
synthetic data and the COMPASS database data. A common instability of the models
in edge area, which was probably caused by a low signal-to-noise ratio, was observed. In
addition to that, it was indicated that the performance of the models in terms of precision
was lower than the performance of the COMPASS software. A set of possible causes
concerning both mentioned topics was discussed. A direction of further research with the
objective of improving the models, primarily the profile model, was proposed.
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Appendix A

List of probability distributions

This appendix presents a brief overview of continuous probability distributions that were
used or mentioned in this research task.

A.1 Normal and half-normal distribution
The probability distribution function (pdf) of normal distribution is defined as

f(x | µ, σ) = 1√
2πσ2

exp
{
−(x− µ)2

2σ2

}
(A.1)

where µ denotes the mean (and median) of random variable X and σ is its standard
deviation. Half-normal distribution is created from normal distribution with µ = 0 by
truncating it to positive domain. Probability distribution functions of normal and half-
normal distribution is plotted for comparison in Fig. A.1.

Fig. A.1: Probability distribution function of normal and half-normal distributions.
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A.2 Cauchy and half-Cauchy distribution
The probability distribution function (pdf) of Cauchy distribution is defined as

f(x | α, β) = 1

πβ
[
1 + (x−α

β )2
] (A.2)

where α and β are parameters which are analogous to mean µ and standard deviation σ
respectively. However, it should be noted that neither mean nor standard deviation can
be defined in the context of the Cauchy distribution. It is often described as being heavy-
tailed and because of that it can be used as a less restrictive alternative to the normal
distribution.

Half-Cauchy is created from Cauchy distribution with α = 0 by truncating it to positive
domain. Both probability distribution functions are plotted in Fig. A.2.

Fig. A.2: Probability distribution function of Cauchy and half-Cauchy distributions.

A.3 Log-normal distribution
Distribution of any random variable X whose logarithm ln(X) is normally distributed.
A variable might be modeled as log-normal if it can be thought of as the multiplicative
product of many small independent factors.[20]

Log-normal distribution has positive domain. Its probability distribution function is

f(x | µ̃, σ̃) = 1

x

1√
2πσ̃2

exp
{
−(ln(x)− µ̃)2

2σ̃2

}
. (A.3)

The native µ̃ and σ̃ parameters refer to the mean and standard deviation of the underlying
normal distribution of ln(X). These parameters are used in the implementation of log-
normal distribution in the PyMC3[19] library.
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In some cases it is convenient to introduce different parametrization based on mean µ
and standard deviation σ of X. Relation between these and the native parameters is given
by the following set of transformation equations

µ̃ = ln(µ)− 1

2
ln
(
1 +

σ2

µ2

)
(A.4)

σ̃ =

√
ln
(
1 +

σ2

µ2

)
(A.5)

Notice that parameter σ always appears in a form of expression σ2

µ2 in both equations.
Therefore, it is straightforward to derive a third parametrization, which uses a relative
standard deviation σR

σR =
σ

µ
. (A.6)

Example of probability distribution function of log-normal distribution parametrized
as f(x | µ, σR) is plotted in Fig. A.3.

Fig. A.3: Probability distribution function of log-normal distribution with transformed
parameters µ and σR.
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