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In this report, the processes involved in X-ray amplification in plasma-based gain medium

are studied. The plasma is assumed to be generated via interaction of a laser beam with

a solid iron target. Both the interaction of laser with solid target and the x-ray ampli-

fication are being simulated. Particular focus is put on the radiation propagation and

energy exchange. A ray tracing procedure is implemented to simulate the phenomena.

The resonant absorption, bremsstrahlung and x-ray gain models are taken into account.

The X-ray gain model is based on M -level system of rate equations in neon like iron.

The algorithm is developed for a general mesh, to enable integration to both, finite

difference and finite element, hydrodynamic codes operating on Lagrangian grids. The

results of the M -level model of gain are evaluated and several ray tracing simulations

are performed to demonstrate the capabilities of the developed method.
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providing his patient guidance as well as constant encouragement. I would also like to

give special thanks to my consultant Ing. Jan Nikl for his insightful advice, without him

this study would not be possible.

vi



vii



Contents

1 Introduction 1

2 Direction of radiation propagating in plasmas 3

2.1 Geometric optics approximation . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Snell’s law in vector form . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Refractive index of cold plasmas . . . . . . . . . . . . . . . . . . . . . . . 4

3 Absorption of radiation propagating in plasma 6

3.1 Energy distribution in many ray approximation . . . . . . . . . . . . . . . 7

3.2 Laser absorption model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Inverse bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 Resonance absorption . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 X-ray amplification model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Verification of numerical results . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Comparison with previous results . . . . . . . . . . . . . . . . . . . 12

4 Domain discretization 15

4.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Discretization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Electron density gradient estimation 17

5.1 Local reconstruction using a least squares method . . . . . . . . . . . . . 17

6 Ray tracing algorithm for general meshes 19

6.1 Ray trajectories computation . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Comparison with the direct integration . . . . . . . . . . . . . . . . . . . . 21

6.3 Ray energy exchange estimation . . . . . . . . . . . . . . . . . . . . . . . 24

7 Simulations of radiation propagation 26

7.1 Results of 1D hydrodynamic simulation . . . . . . . . . . . . . . . . . . . 26

7.2 Gain prediction in 1D hydrodynamic simulation . . . . . . . . . . . . . . . 27

7.3 Extension of the 1D results to 2D . . . . . . . . . . . . . . . . . . . . . . . 29

7.4 Driving laser absorption simulation . . . . . . . . . . . . . . . . . . . . . . 30

7.5 X-ray gain simulations in laser generated plasma . . . . . . . . . . . . . . 32

8 Conclusion 35

Bibliography 36

viii



ix



Chapter 1

Introduction

A source of intensive coherent x-ray radiation has the potential to play a crucial role

in various fields ranging from biology to fundamental physics [19]. Among notable

application, are high resolution holographic microscopy, microlithography for production

of micro scale computer chips and tomographic imaging of molecular orbitals to name

a few [22].

Multiple different approaches to x-ray radiation generation are currently available,

where one of the most successful methods is the so called Free Electron Laser (FEL)

[19]. A device that uses relativistic electron as a gain medium. This work concerns a

different approach, a plasma amplification medium based soft X-ray laser. The idea is

to use a plasma generated by a conventional laser pulse as a gain medium for a X-ray

pulse to amplify it. The weak X-ray pulse created by other means (usually by higher

harmonics generation) is called a seed. In general the driving laser is incident on a solid

target under an angle. Here it is assumed that the driving laser is placed perpendicular

to the target and that the seeding pulse traverses the created plasma in direction parallel

to the target surface. The geometry of this approach is summarized in Fig 1.1.

This work is a continuation of our previous effort to simulate the process [22]. In the

previous work, the plasma conditions, generated by laser interacting with a solid iron

target, were simulated using a hydrodynamic approach in one dimension. This work

is aimed at implementing a sufficient model of laser plasma interaction and radiation

propagation. A ray tracing approach described in [21] is taken. It is intended, that the

implemented algorithm is used for both driving laser absorption estimation and X-ray

seed amplification evaluation in multi dimensional hydrodynamic simulations [12], [16].

To accurately model the x-ray amplification, a new model of x-ray gain using the

coefficients obtained using the Flexible Atomic Code (FAC) [9] is implemented. This

1



Chapter 1 Introduction 2

plasma

Fe target

driving laser

seeding x-ray pulse

x

y

Figure 1.1: The geometry of plasma generated by the driving laser as an amplification
medium for the seeding X-ray pulse

model takes into account M electron energy levels as opposed to the previous approach

inspired by [19], where only 3 energy levels were used, leading to a significantly more

realistic estimates.

In chapter 2 a theoretical framework of the work is established. A geometric optics

approximation is introduced and a model of cold plasma is used to describe the plasma

properties relevant to radiation propagation. This is further expanded in chapter 3,

where a general approach to plasma and radiation interaction is described. Most notably

in this chapter a M -level x-ray amplification model is introduced and its predictions are

compared to the previous model [22].

The basic domain discretization techniques used in hydrodynamic simulations rele-

vant to this work are presented in chapter 4 and following up on this a gradient estimation

method is summarized in chapter 5.

All the previous partial results are gathered in chapter 6 to form a ray tracing al-

gorithm for general meshes with energy exchange estimation as post processing of the

trajectories. This algorithm is used in chapter 7 to perform simple simulations in 1D

results extended to 2D by assuming a symmetry. The goal of the these simulations is

to demonstrate the capability of the implemented methods to be used for both driving

laser absorption and X-ray laser amplification.



Chapter 2

Direction of radiation

propagating in plasmas

In this chapter a basic model of laser propagation is reviewed. Throughout the text, the

laser is described as a set of independent laser rays, each carrying a part of the original

laser beam energy. This enables separate treatment of each ray via the framework of

geometric optics approximation. Numerical methods employing such approximation is

usually referred to as ray tracing. It relies on the knowledge of index of refraction,

described at the end of this chapter.

2.1 Geometric optics approximation

In the geometric optics approximation, the wave properties of radiation are neglected.

It is thus necessary that the plasma characteristic scales are large compared to the

wavelength λ of the propagating radiation [2].

Ray equation governing the ray trajectory in given media states that [2]

d

ds

(
n
d~r

ds

)
= ∇n. (2.1)

Here s is a parameter measured along the trajectory of the ray, ~r are the coordinates the

of trajectory points and n is the index of refraction evaluated at the trajectory points.

3



Chapter 2 Direction of radiation propagating in plasmas 4

2.2 Snell’s law in vector form

A special case of ray propagation encountered in ray tracing simulations is a ray passing

through an interface of two isotropic media. The refraction will occur in a plane and

it can be derived from the ray equation (2.1), that the relation between the angle of

incidence θ1 and angle of refraction θ2 measured from the normal to the boundary is

given by [2]

sin θ1n1 = sin θ2n2, (2.2)

where n1 and n2 are the indices of refraction. This is what is usually referred to as the

Snell’s law. Combined with the law of reflection, it provides a full description of the

situation in terms of ray direction.

Although this form is very simple and can be directly used to perform energy depo-

sition simulations [21], but assumptions that the refraction occurs in a plane and that

the angles are measured from the interface normal, must be taken into account during

the algorithm implementation. To simplify the implementation to actual simulations,

especially in three dimensions, a vector form of Snell’s law is used [8]. Denoting

c = cos θ1 = −~n ·~l, (2.3)

where l is a unit vector in a direction of the incidence ray and n is the unit normal to

the interface. As there are two options for the unit normal, the one for which c ≥ 0 is

taken. Further designating r = n1/n2, it can be shown that vector form of Snell’s law is

~d = r~l +
(
rc−

√
1− r2(1− c2)

)
~n, (2.4)

where ~d is the direction of the refracted ray. This formulation also provides an insight to

total reflection as for 1− r2(1− c2) < 0 there is no refracted ray. This can only happen

for n1 > n2.

2.3 Refractive index of cold plasmas

A model taken over from [21] for index of refraction is used. It holds for collisional cold

plasma approximation and states that plasma permittivity is

ε = 1−
ω2
p

ω2 + ν2
ei

+ i
νei
ω

ω2
p

ω2 + ν2
ei

, (2.5)
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where νei is the collisional frequency, ω is the angular frequency of the laser, ωp is the

electron plasma frequency

ω2
p =

4πe2ne
me

. (2.6)

Spitzer formula [6] extended for low energies is used to determine the collisional frequency

νei =
4

3

√
2πZe4ne ln Λ

√
me(kbTe + Ef )3/2

, (2.7)

where Z is the average ionization, e is the electron charge, ne is the electron density,

me is the mass of electron, kb is the Boltzmann constant, Te is electron temperature.

Furthermore ln(Λ) is the Coulomb logarithm

ln(Λ) = max

(
2, ln

√
bmax
bmin

)
, (2.8)

where

bmax =

√
kbTe
me

max
(
ω, ωp

) bmin = max

(
Ze2

kbTe
,

~√
kbTe/me

)
. (2.9)

Finally, EF is the Fermi energy [21]

EF =
~2

2me
(3π2ne)

2/3, (2.10)

where ~ is the reduced Planck constant.

To obtain the index of refraction, it is assumed that the relative permeability µ of

examined plasma is close to a unity, thus it follows that

n = Re
(√
εµ
)

= Re
(√
ε
)
. (2.11)

Note that ε is a complex number in general. The index of refraction corresponds to the

real part Re
(√
ε
)
. The significance of the Im(

√
ε) is clarified in chapter 3.



Chapter 3

Absorption of radiation

propagating in plasma

In the previous chapter, trajectories of rays obtained by the decomposition of the laser

beam were discussed. To complete the model of radiation propagation, an approximation

of energy exchange between plasmas and radiation is necessary. In case of a driving laser

interacting with a solid target, absorption is the most important aspect. On the other

hand, to model refraction effects in gain estimating simulations, radiation amplification

is the main subject of interest. Both are described in this chapter. Common ground for

all the models is the transfer equation [11]

dI(t, ~r)

ds
= j(t, ~r)− k(t, ~r)I(t, ~r), (3.1)

where I is the intensity of laser ray at given time and space, j is the emissivity coefficient

of the media, k is the absorption coefficient and s is the parameter along the trajectory

of the ray. Assuming a homogeneous media and thus j and k constant, this equation

can be integrated over area ∆Si and time ∆t similarly to (3.5). Further neglecting the

emissivity j of the media, an equation for energy of the radiation is obtained [21]

dE∆t∆Si

ds
= −kE∆t∆Si . (3.2)

In homogeneous media, its solution can be easily written in terms of energy absorbed in

the media ∆E and length of path the ray traced in this media l

∆E = Ein
(
1− exp(−kl)

)
, (3.3)

where Ein is the energy of the ray entering the medium.

6



Chapter 3 Absorption of radiation propagating in plasma 7

3.1 Energy distribution in many ray approximation

A laser beam is usually described by its intensity I(t, ~r), which in general case varies

in time and space. Now given an arbitrary small time interval ∆t, the laser at the

beginning, before absorption, carries a fraction of total energy E0∆t given by the spatial

and temporal distribution of intensity,

E0∆t =

∫ t+∆t

t

∫
S
I(τ, ~r) d~r dτ (3.4)

where S is a closed surface encapsulating the source. In the case of laser, a surface close

to the origin can be chosen. This surface is the idealized spatial cross section of the laser

beam. To discretize the laser into N rays, the cross section is divided into N areas ∆Sj ,

where index j denotes a single ray. Each ray is associated energy equal to

E0∆t∆Sj =

∫ t+∆t

t

∫
∆Sj

I(τ, ~r) d~r dτ. (3.5)

It follows that the sum of energies of each ray is the total initial energy of the laser beam

at a given time step

E0∆t =
N∑
i=1

E0∆t∆Sj . (3.6)

In practice usually a homogeneous division of S is taken.

3.2 Laser absorption model

Laser radiation absorption model used in this work is adopted from [21]. Here only the

main points are summarized. Detailed treatment is presented in the mentioned work.

Two major mechanisms taken into account are bremsstrahlung and resonant absorption.

3.2.1 Inverse bremsstrahlung

Radiation emitted by collisions of charged particles is called bremsstrahlung, from term

for breaking radiation. An inverse process to this, during which an electron absorbs a

photon while colliding with another charged particle, is called inverse bremsstrahlung [7].

Following the conclusions of [21], the inverse bremsstrahlung absorption coefficient k

is set to be

kib =
2ω

c
Im
√
ε, (3.7)
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where ω is the angular frequency of the laser, c is the speed of light and ε is the permi-

tivity specified by equation (2.5).

3.2.2 Resonance absorption

If there exists a non-zero electric field component of the electromagnetic wave in the

direction of plasma electron density gradient, an evanescent plasma wave around the

area of critical density is resonantly excited and energy is absorbed. This is known

as resonant absorption and depends on the polarization of the incident radiation. In

case of the electric field vector polarized in the plane of incidence, usually referred to

as p-polarization, the effect is maximal and a part of the laser energy is resonantly

absorbed at the laser turning point. On the other hand if the electric field vector is

polarized perpendicular to the plane of incidence, usually referred to as s-polarization,

no resonant absorption occurs [20].

For p-polarization, an approximate analytical model devised by [20] is used. It states

that

∆E = aEin, (3.8)

a = 18q
Ai3(q)

|Ai′(q)|
, (3.9)

q =

(
2π

λ
Lchar

)2/3

sin2 ϕin, (3.10)

Lchar =
ncrite

| gradne|crit
, (3.11)

where

ncrite =
meπc

2

e2λ2
. (3.12)

Here ne is called the critical density, me is the mass of electron, c is the speed of light, e

is elemental charge, λ = 2πc/ω is the wavelength of incident radiation and Ai is the Airy

function. Further note, that | gradne|crit is the magnitude of electron density gradient

evaluated at the point of critical density. Finally ϕin is the angle between the incident

ray and the gradient of electron density. For sake of implementation, sin2 ϕin can be

expressed in terms of the directional vectors of the ray and the gradient

sin2 ϕin = 1− cos2 ϕin = 1−
(
~l · ~g

)2
, (3.13)

where ~l is the direction of the ray and ~g is the direction of the electron density gradient.

Both of these vectors magnitudes are normalized.
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Now, to avoid numerical calculations of the Airy functions, an approximate relation

introduced in [21] is used for a

a = q
exp(−4

3q
3/2)

q + 0.48

π

2
. (3.14)

Altogether, the model states that

∆E = q
exp(−4

3q
3/2)

q + 0.48

π

2
Ein (3.15)

is the amount of energy being absorbed at the radiation turning point, due to resonant

excitation of plasma waves, given that the radiation is fully p-polarised.

3.3 X-ray amplification model

The absorption coefficient k in equation (3.1) may not be positive. The negative co-

efficient k is usually replaced by the so called gain coefficient g [11]. This leads to

modification of equation (3.3)

∆E = Ein(1− exp(gl)). (3.16)

As in this notation the ∆E is negative, a new quantity Eg is used, the radiation energy

gain

∆Eg = Ein(exp(gl)− 1). (3.17)

In the previous work [22], the gain coefficient has been estimated for a specific x-ray

transition in and electron shell of neon-like iron. The transition of interest has been

2p5
1/23s1/2, J = 1 −→ 2p5

1/23p1/2, J = 0 (3.18)

based on the simulations described in [19]. Throughout the work, the jj-coupling nota-

tion is used the same way as it is used in [9].

To estimate the gain coefficient of x-ray radiation, an inversion in atomic level popu-

lations at the transition of interest is required. Assuming that the Einstein coefficient for

stimulated emission B21 can be expressed in terms of weighted oscillator strength g1f12,

where g1 is the degeneration of the lower level and supposing that the profile function

is approximated by 1
∆ν , ∆ν being the broadening of the spectral line, commonly used
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simplification [11], the gain coefficient can be estimated as

g =
πe2

cme
g1f12

(
N2

g2
− N1

g1

)
1

ν
. (3.19)

Here, e is the elemental charge, c is the speed of light, me is mass of electron, N2/g2

is the population density of upper level, where g2 is the degeneration of this level and

N1/g1 is the population density of lower level, where g1 is the degeneration of lower

level.

To accurately estimate the gain coefficient, the weighted oscillator strength g1f12,

line broadening ∆ν and level populations N1
g1

, N2
g2

are needed.

Line broadening is obtained from the Doppler and Lorenz broadening models de-

scribed in the previous work [22]. For the Doppler width the following formula is used

∆νDFWHM =
1

2
√

ln 2
ν

√
2kTi
muc2

, (3.20)

where ν is the frequency of transition of interest, k is the Boltzmann constant, Ti is the

ion temperature, mu is the atomic mass unit and c is the speed of light. To estimate

the effect of Lorentz broadening the following relation is used

∆νLFWHM = αn2
eT
−1/2
e , (3.21)

where ne is the electron density, Te electron temperature and constant α is chosen in

such a way that the predictions match those of [10]. Altogether the profile function has

the form
1

∆ν
=

1

∆νDFWHM + ∆νDFWHM

. (3.22)

The weighted oscillator strength and level populations are estimated using the Flex-

ible atomic code (FAC) [9]. Weighted oscillator strength is simply a function of given

transition and can be directly obtained. Situation is more complicated when it comes

to the level populations. As the inversion in level populations is required to simulate a

media with positive gain coefficient, Boltzmann distribution of electron populations can

not be used as the system is not in an equilibrium. Instead, a solution of a system of

rate equations must be found [11]. This has been previously done using a simple three

level system introduced in [10]. Here a full M-level system is solved in the quasi-static

approximation [11].

Density of electrons at a given energy level changes due to various collisional and

radiative processes. In this work, collisional excitation, collisional deexcitation governed
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by Einstein coefficient Cij respectively Cji and radiative deexcitation governed by Ein-

stein coefficient Aji are assumed to be the main contributions to level population and

depopulation. Indices i, j, where j > i, denote arbitrary levels between which a transi-

tion is not forbidden. Other processes such as ionizing collisions, photo-recombination,

photoexcitation and photoabsorption and three-body recombination are neglected not

included. This may be a source of error and should be properly addressed in future

work.

The rate of population/depopulation of a level can be summarized by equation [11]

dNi

dt
=
∑
j>i

NjAji −Ni

∑
l<i

Ail +
∑
k

NkCki −Ni

∑
m

Cim, (3.23)

whereNi is the population density of the particular level i. Coefficient Aij is a probability

specific for each transition and does not depend on state variables, coefficient Cij is

a probability of collisional excitation/deexcitation governed by collisionl cross-section

〈σijv〉
Cij = ne〈σijv〉, (3.24)

where ne is the electron density. In this work, electron distribution is considered as

Maxwellian and thus the coefficient Cij is a function of temperature and electron density.

Using the quasi-static approximation that assumes level populations to vary slowly

with population times, it is possible to form a set of equations for a given small dt and

M energy levels
dNi

ddt
= 0, i = 1, 2, . . . ,M. (3.25)

This system has no unique solution, as can be seen from equation (3.23). If ~a is the

solution of the system, then C~a is also a solution, where C is a real constant. To obtain

a unique solution a condition

N1 +N2 + · · ·+NM = fani (3.26)

must be satisfied, where ni is the total ion density and fa the fractional abundance of ion

of interest. Fractional abundance is a function of ion temperature and is also obtained

using FAC.

Using the mentioned Flexible atomic code (FAC) [9], the values of the Einstein co-

efficients are found based on the numerical solutions of the Dirac equation and input

state variables from a hydrodynamic simulation. The quasi-static system is formed and

solved also using FAC.
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3.3.1 Verification of numerical results

To ensure the model is properly implemented and to demonstrate its usage, a set of

relative populations at the level 2p5
1/23p1/2, J = 0 in neon-like germanium has been

evaluated for a given set of state variables. Following the results in [1] it has been

done for electron densities ranging from 1020 cm−3 to 1023 cm−3 and set of temperatures

650, 850, . . . , 1850 eV. The results are presented in Fig. 3.1.

Figure 3.1: Relative populations N of 2p51/23p1/2, J = 0 in neon-like germanium at
various temperatures Te as a function electron density ne

Comparing the graphs of the results it is possible to conclude that the predicted rel-

ative populations are identical to results in [1]. This must be the case, as same methods

have been used. This test thus serves as a sanity check of the method implementation.

3.3.2 Comparison with previous results

To compare the full M-level method with the previous results using the three-level system

[22], the gain coefficient g is estimated for temperatures in the range of 150 - 850 eV and

the densities in the range of 1019− 1023 cm−3. The same ion and electron temperatures

are taken. This is done for transition (3.18) in neon like iron. The result is shown in

Fig. 3.2.
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Figure 3.2: Gain coefficient as a function of temperature T and electron density ne

Gain coefficient maximum is around 9 cm−1 and is achieved for density 7.5× 1020 cm−3

and temperature 421 eV. In the previous work the maximum was predicted for density

3.6× 1020 cm−3 and temperature 521 eV and it was around 48 cm−1.

Compared to the previous work, the gain area is elongated along the density scale

and logarithmic scale had to be used for electron density. This is expected as stated

in [10] when comparing a three level model with the full M-level model. Otherwise the

profile is remarkably similar, considering the simplicity of a three level system. The

absolute values of gain differ by approxiamtely a factor of five. It was expected that the

gain coefficient predicted by M-level system will be lower although the factor of five is

surprising and will be a subject of future study.
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Figure 3.3: Population at the upper and lower energy levels as a function of density
at temperature 421 eV

Using the M-level model, negative values of gain coefficient can be obtained. These

are obtained if there is no longer a population inversion. This can be clearly seen in a

graph of populations at the upper and lower energy levels as function of electron density.

Temperature of 421 eV, at which the maximal gain is observed, is chosen and the graph

is shown Fig. 3.3. The threshold where the inversion is 0 is at 8.1× 1021 cm−1. This is

consistent with the expectation that there exist a threshold electron density at which

the inversion no longer occurs [10].



Chapter 4

Domain discretization

As the implemented algorithm is intended to be used in various hydrodynamic codes, it

is necessary to introduce the different discretization practices. The emphasis is on the

Lagrangian coordinates as these are used in targeted codes.

4.1 Basic concepts

In the Lagrangian coordinates the system is described using the Lagrangian coordinate

X and time t. The coordinate X uniquely indicates a single fluid element and t is time.

For detailed explanation of how to transform a system in the Eulerian coordinates to

the Lagrangian coordinates, see [22].

For this work, a concept of face is also necessary. The definition of face varies with

the number of dimensions. In 1D face is just a node between two cells, in 2D face is a

line prescribed by two nodes between two cells and in 3D face is a surface prescribed

by at least three nodes between two cells. For 2D visual representation of a Lagrangian

mesh, see Fig. 4.1.

4.2 Discretization schemes

In the finite difference method used in PALE a staggered scheme [3] is used. It states

that, state values such as density, temperature, ionization etc. are in cell centers (cells

being the fluid elements) and velocities are prescribed at nodes.

In finite element codes such as PETE2 [17][15], the state values and flow rates are

defined in different finite element spaces. It is the space of piece-wise constant functions

15
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Node

Cell

Face

Figure 4.1: 2D visual aid for definition of cell centroid where state variables are
located, nodes where flow rates are located and a notion of face

L2 for state variables and space of piece-wise linear functions H1 for kinetic variables

[5]. In lowest order finite elements, this is equivalent to the staggered scheme used in

finite difference methods.

As the ray tracing code aims algorithm aims to be as general as possible, various

mesh types have to be taken into account. In 2D, the focus is mainly on triangle and

quadrilateral discretization, although in theory the algorithm could be used for arbitrary

polygons. It is intended to use the algorith in PALE, where quadrilateral staggered

discretization is used [13] and PETE2 where both triangular and quadrilateral finite

elements can be used [16].



Chapter 5

Electron density gradient

estimation

The knowledge of the electron density gradient direction at any point of a face is crucial

for the ray tracing algorithm, as it is further explained in chapter 6. To be able to

evaluate the amount of energy absorbed due to resonant absorption using the equation

(3.15), the magnitude of electron density gradient is needed.

5.1 Local reconstruction using a least squares method

The task is to reconstruct the gradient from electron density ne defined in the centroids

of cells. Local reconstruction algorithm proposed in [18] is used. The derivation is done

in 2D. First the gradients at nodes are reconstructed. This is done by fitting a linear

polynomial

ne(x, y) = nie + ∂xnie(x− xi) + ∂ynie(y − yi), (5.1)

around a node i over a cells adjacent to i, where (xi, yi) is the location of the node.

Consider l to be one of the adjacent cells, then the polynomial evaluated at the centroid

of l is nle = ne(xl, yl), where (xl, yl) is the cell centroid location. Note that there are

actually three unknowns in the equation as the density at the node location is also

unknown. The unknown vector is thus (nie, ∂xn
i
e, ∂yn

i
e), where ∂αnie is the α components

of the average gradient. Given that there is more than two adjacent cells to the node i

an overdetermined system A~x = ~b can be formed. In this case a weighted least squares

17
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approach is taken [18]

A =



w1 w1(x1 − xi) w1(y1 − yi)
...

...
...

wl wl(xl − xi) wl(yl − yi)
...

...
...

wN wN (xN − xi) wN (yN − yi)


, ~x =


nie

∂xnie

∂ynie

 , ~b =



w1n
1
e

...

wln
l
e

...

wNn
N
e


, (5.2)

where

wl =
1

dPl
, dl =

√
(xl − xi)2 + (yl − yi)2. (5.3)

The parameter P is set to 0.25 following the original article. The system is then solved

in the least squares sense using the QR factorization via Householder transformation.

The result of QR factorization is an orthonormal matrix Q and upper triangular matrix

R. Matrix R is trivially trimmed to size (3 × 3) and inverted by forward substitution.

The solution vector is given by

~x = R−1Q~b. (5.4)

Note that at the borders of the domain there are nodes with less than three adjacent

cells. In that case the number of cells is artificially augmented taking into account

extended neighbourhood of the node as described here [18].

With a gradient computed at the grid nodes the value of the gradient at any given

point (gradne)
ij(~x) of a face is estimated as a linear interpolation of the gradients at

the nodes i, j forming the face

(gradne)
ij(~x) = (gradne)

i + |~x− ~xi|
(gradne)

j − (gradne)
i∣∣(gradne)j − (gradne)i
∣∣ , (5.5)

where (gradne)
i is the gradient value at node i, (gradne)

j is the gradient value at node

j and ~xi is the position of node i.

The gradient computation is here described for the a 2D mesh, but an analogous

algorithm could be used in case of 3D simulations.



Chapter 6

Ray tracing algorithm for general

meshes

In this chapter, the technical details of the implemented ray tracing algorithm are dis-

cussed. The code itself consist of multiple modules, to separate concerns and improve

readability and maintainability. Most importantly the algorithm for finding the ray tra-

jectories is separated from the procedures estimating the energy exchanged with plasma.

The description is presented in 2D although, most of the algorithm can be used in 3D

simulations as is.

6.1 Ray trajectories computation

Initially, the simulated radiation needs to be decomposed to a set of individual rays. A

line in space outside of the simulation mesh is chosen. At this line a set of equidistant

rays with prescribed direction is generated. Each of these rays is assigned a particular

energy by performing a numerical integration of intensity according to (3.5). Beside

energy, each of the rays has its own wavelength, although in practice this is usually the

same for all rays, when simulating a single laser source.

Each of the rays is then independently traced through the mesh. A single ray is

traced using the following steps:

1. An intersection with the boundary of the mesh is found. The boundary is described

as a set of faces. For each face given by points A, B, an attempt is made to find

an intersection O with a half line defined by the ray origin P and the direction

~d. Denoting ~nd a normal to ~d and ~nAB a normal to AB, the intersection is found

19
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using the following formula

k =
~nd · (P −A)

~nd · (B −A)
(6.1)

t =
~nAB · (A− P )

~nAB · ~d
(6.2)

O = A+ k(B −A), (6.3)

where the intersection lies on the face only if parameters k and t fulfill the following

inequalities

k ≥ 0 ∧ k ≤ 1 ∧ t ≥ 0. (6.4)

For illustration, see Fig. 6.1. The direction of the ray on the boundary remains

unchanged.

O

A

B

P

d

nd
nAB

td

k(B - A)

Figure 6.1: Intersection O and a face AB with half line ~d

2. A cell adjacent to the face is found and an arbitrary procedure resulting to a point

on a face of the cell is performed. In case of cells with assigned constant values of

state variables, the index of refraction is assumed to be constant over the whole

cell. This results in a ray propagating in a straight line [21] and is resolved by

finding an intersection with the cell faces. The same procedure as in step 1. is

used. The origin of the half line is the previous intersection and the direction is

given by the previous step.

3. In the found point, the electron density gradient is calculated. This is done by

employing one of the methods described in chapter 5.

4. Adjacent cells to the newly obtained face are found and a procedure deciding a

new direction is called. In case of this work, it is usually a function implementing

the Snell’s law combined with law of reflection in form of equation (2.4). It is

important to note, that the interface between environments with different indices

of refraction appearing in the Snell’s law, is given by the electron density gradient

and not the face itself. This effectively means that in the vector form of Snell’s law,
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unit vector in the gradient direction is taken for ~n. Also, to avoid numerical

errors, the ray is only refracted if (∇ne) ·~l > 0 meaning that the ray is propagating

along the gradient. If a total reflection occurs, the cell previous to this intersection

is marked to be later used for resonant absorption.

5. There is no assumption made about the direction returned by the previous proce-

dure. Given the direction, one of two adjacent cells is chosen.

6. Now the simulation returns to step 2. and repeats unless a condition for termina-

tion is met. This condition is usually set to the ray leaving the mesh.

Note that in these steps no assumption is made about the type of cells. The same

algorithm is used for both triangle and quadrilateral meshes. Also an arbitrary procedure

can be used to trace the path inside a cell. This is advantageous as the state variables

inside cells might not be constant as is the case in finite difference methods. To enable

tracing in higher order finite element domains a new procedure for finding trajectory

inside a cell has to be implemented, but the overall algorithm stays the same.

6.2 Comparison with the direct integration

The ray equation (2.1) can be solved using a direct integration method such as the

Runge-Kutta fourth order method. To do so, it needs to be rewritten as a set of ordinary

differential equations. This is properly done in [21]. It can be shown that using the

coordinates (θ, φ, n), where θ is the angle between z-axis and the ray, φ is the angle

between the ray and x-axis in the xy plane and n is the index of refraction, the unit

vector in direction of propagation of the ray is

d~r

ds
= (sin θ cosφ, sin θ sinφ, cos θ). (6.5)

The derivation along the ray then has the following form

d

ds
=
dθ

ds

∂

∂θ
+
dφ

ds

∂

∂φ
+
dn

ds

∂

∂n
. (6.6)
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Substituting these into the ray equation (2.1) and performing the necessary algebraic

adjustments, a system of ordinary differential equations can be formed [21]

dx

ds
= sin θ cosφ (6.7)

dy

ds
= sin θ sinφ (6.8)

dz

ds
= cos θ (6.9)

dθ

ds
=

cos θ

n

(
cosφ

∂n

∂x
+ sinφ

∂n

∂y

)
− sin θ

n

∂n

∂z
(6.10)

dφ

ds
=

1

n sin θ

(
cosφ

∂n

∂y
− sinφ

∂n

∂x

)
. (6.11)

To simplify the system, a solution in the plane yz is considered. By setting φ = π the

system reduces to

dy

ds
= sin θ (6.12)

dz

ds
= cos θ (6.13)

dθ

ds
=

1

n

(
cos θ

∂n

∂y
− sin θ

∂n

∂z

)
. (6.14)

In a special case of linear dependence of index of refraction n = Cz, the system has

the form d~ξ
ds = ~f(~ξ)

d

ds


y

z

θ

 =


sin θ

cos θ

−− sin θ
z

 (6.15)

and can be solved using the Runge-Kutta fourth order method.

To compare the solution obtained by this direct integration with the ray tracing

algorithm a special form of electron density profile needs to be chosen and collisions

must be neglected by setting ionization to 0. Setting electron density profile to

ne = ncrite (1− z2) (6.16)

and neglecting collisions results to permitivity (2.5) equal to

ε = 1−
ω2
p

ω2
= 1− ne

ncrite

= z2 (6.17)

and thus the index of refraction

n =
√
ε = |z|. (6.18)
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Using this profile, the ray turning zt point can be analytically determined. It is

zt = 1− sin θ0, (6.19)

where θ0 is the initial angle of incidence of the ray. The electron density of the plasma

at this point is referred to as the effective critical density and is equal to

ne(zt) = ncrite (2 sin θ0 − sin2 θ0). (6.20)

The comparison of the solutions using the density profile (6.16) for various initial

conditions (y0, z0, θ0) (θ0 being the parameter of interest) on a random triangular mesh

has been done. This is summarized in Fig. 6.2 for θ0 equal to 0.1 and 0.2 rad and in

Fig. 6.3 for θ0 equal to 0.25 and 0.5 rad. The choice of angles of incidence is the same

as in [21] to enable direct comparison.
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Figure 6.2: Ray tracing compared with direct integration for initial angel of incidence
θ0 equal to 0.1 and 0.2 rad

It can be seen that the ray tracing follows the directly integrated solution until a

near effective critical density given by (6.20) at position (6.19) is reached. Here, the

conditions for total reflection given by negative radicand in equation (2.4) are met and

the ray makes a sharp turn. This is a known effect of this type of method. The results

are similar to those in [21].
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Figure 6.3: Ray tracing compared with direct integration for initial angel of incidence
θ0 equal to 0.25 and 0.5 rad

For simulations of laser absorption, the key parameter is the depth of penetration.

This equals to direct integration result with precision equal to the mean cell size. The

cell size plays a major role as the condition is met on the first encountered face of cell

with density higher than effective critical density.

6.3 Ray energy exchange estimation

After the ray trajectories are found, the energy changes along these trajectories are

estimated. For a single ray this is achieved by iterating over intersections and calculating

the amount of exchanged energy in each intersected cell.

To approximate the amount of energy absorbed via inverse bremsstrahlung the fol-

lowing formula is used in each cell the ray intersects

∆E = Ein
(
1− exp(−kib|O1 −O2|)

)
(6.21)

where O1 and O2 are the intersections with the cell |O1 − O2| is the length of the ray

in the cell, and Ein is the energy of the ray entering the cell. This stems directly from

equation (3.3) using the bremsstrahlung coefficient kib defined by (3.7) evaluated using
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temperature and ionization in the cell. The value ∆E is then subtracted from the ray

energy and the algorithm continues to another cell.

Energy absorbed through resonant absorption is localized to a single cell. This cell

was marked in step 4. of the ray tracing algorithm. The amount of energy absorbed is

given by equation (3.15).



Chapter 7

Simulations of radiation

propagation

In the previous work [22], a 1D hydrodynamic simulation of laser interaction with solid

target was performed. The new M-level model is used to predict x-ray gain coefficient.

The results are then extended to 2D by assuming a symmetry in direction parallel to

the plane of the solid target. It turns out that x-ray laser propagation in this plasma

is not significantly affected by diffraction effects, a fact that is be further discussed. To

demonstrate the application of the developed algorithm to 2D x-ray intensity estima-

tion based on x-ray amplification model described in chapter 3, tracing of straight rays

parallel to the target surface is performed.

7.1 Results of 1D hydrodynamic simulation

A simulation first described in [19] has been performed in previous work [22]. The

simulation deals with three incoming driving laser pulses interacting with a solid iron

target. The wavelength of the driver is 800 nm. The three laser pulses are specified in

time using the time of peak intensity τ , full width at half maxima FWHM and peak

intensity I. These parameters are summarized in Tab. 7.1.

First pulse Second pulse Third pulse

τ = 1.5 ns τ = 2.0 ns τ = 2.51 ns
∆FWHM = 1.0 ns ∆FWHM = 0.1 ns ∆FWHM = 0.5 ps
I = 1.25 · 1011 W·cm−2 I = 1.25 · 1012 W·cm−2 I = 1.16 · 1015 W·cm−2

Table 7.1: Parameters of the hydrodynamic simulation, τ is the time of arrival,
∆FWHM is full width at half maxima and maximal intensity I

26
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The initial conditions are set to match the conditions in solid iron at room tem-

perature. Ion and electron temperatures are set to 0.03 eV, initial mass density is

7.87 g · cm−3. The initial thickness of the target is only 52 nm to avoid simulating non

ablating cells. As for boundary conditions, the left boundary is a wall governed by zero

velocity and the right boundary condition is specified by pressure of 0.1 Pa allowing the

plasma to expand. Artificial viscosity and heat flux limiter are used during the simula-

tion. A quotidian equation of state (QEOS) [14] is used. This is crucial as the ionization

plays a major role when determining the gain coefficient. The start of the simulation is

marked by time 0 and the end of the simulation is set to 2.54 ns. The results of the 1D

simulation are shown in Fig. 7.1. The full description of the results is in the previous

work [22].
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Figure 7.1: Result of 1D hydrodynamic simulation at time 2.54 ns of three incoming
laser pulses with wavelength 800 nm

7.2 Gain prediction in 1D hydrodynamic simulation

Previously, the hydrodynamic simulation was post processed using a simplistic three

level system to estimate the gain coefficient at a specific wavelength of x-ray radiation.

The transition of concern is (3.18) and has the wavelength of 25.5 nm. In this work, a

more sophisticated M-level model described in chapter 3 is used. Specifically, 240 energy
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levels in neon-like iron are taken into account with principal quantum number up to 6.

It is applied on the result of the 1D hydrodynamic simulation summarized briefly in the

previous section.

In Fig. 7.2, a comparison is made with the results obtained in the previous work.

Both the absolute gain profiles and relative gain profiles are contrasted. As is already

pointed out in chapter 3, the predicted absolute gain values are approximately five time

smaller then using the 3-level system, but the profiles are fairly similar. This is partially

explained by the fact, that the profile is largely influenced by the fractional abundance

of neon like ions, which is modeled in the same way in both cases.
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Figure 7.2: Comparison of gain profiles emerging from post processing of the 1D
hydrodynamic simulation using the 3-level system and M-level system. In the left
image is a comparison of relative gain profiles gr and in the right image are the actual

gain values g

The actual difference in the model is mainly in the computation of the relative pop-

ulation inversion. To highlight this, the relative population inversion is compared in

Fig. 7.3. This is also done using the normalized inversion and the actual relative inver-

sion (here relative is in the context of abundance of the neon like ions). The normalized

profiles are comparable, except for the area close to the target on the left. There are no

conditions for the levels of interest to be populated at all. While the more sophisticated

M-level simulation can deal with this fact very well as many other levels are taken into

account, the simplistic 3-level method fails to produce physically relevant results.
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To summarize, the M-level model points to some flaws in the 3-level approximation.

Most importantly, to the assumption that most of the population is located at these

three levels. This leads to overestimation of the relative inversion by a factor of five in

our particular case. The fact that otherwise the profiles are remarkably similar is very

valuable as for the applicability of the 3-level model where a simple and fast solution

is required. However, caution must taken when it comes to absolute values of level

populations.

The main benefit of the M-level system is its ability to provide relevant predictions

in plasma regions with zero or negative gain coefficient. This may prove valuable in full

multidimensional hydrodynamic simulations.
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Figure 7.3: Relative populations inversion R used for gain predictions. On the left is
a normalized profile and on the right is the actual relative inversion

7.3 Extension of the 1D results to 2D

To enable 2D ray tracing simulations, the results of 1D hydrodynamic simulation is

extended to 2D by assuming a symmetry in direction parallel to the target. This is

achieved by creating a quadrilateral mesh with 200 cells of size given by 1D Lagrangian

simulation in x direction and 200 equidistant nodes in y direction. Values of state

functions are mapped accordingly to 1D simulation. To illustrate this, part of the mesh
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and mapped gain coefficient, obtained using the M-level model, are shown in Fig. 7.4.

The whole mesh is 1 mm wide and almost 140 µm long (width is in the y direction). The

width of the mesh is chosen based on the results of simulations [19].

Figure 7.4: Gain coefficient g mapped on a 2D mesh created by extension of 1D
results

7.4 Driving laser absorption simulation

Using the mapped results, a 2D ray tracing of a driving laser with wavelength 800 nm

has been performed. This demonstrates the capability of the implemented algorithm to

predict absorbed energy of the driving laser in a 2D hydrodynamic simulations.

First, a driving laser with angle of incidence 30◦ is examined. The trajectories have

been found for 10000 rays, beginning at a line segment defined by points (140, -50) µm

and (140, -10) µm. The spatial intensity I∆t is assumed to be Gaussian normalized to 1

with ∆FWHM = 10 µm. This means that after distributing the energy among the rays,

using equation (3.5), the combined energy of all rays is equal to 1 (in arbitrary energy

units). The initial direction of all the rays is set to a given vector.

The trajectories have been post processed using the models of inverse bremsstrahlung

and resonant absorption described in chapter 3. Both the trajectories and the resulting
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absorbed energy are demonstrated in Fig. 7.5. For obvious reasons, not all trajecto-

ries are displayed, only a representative sample. Zoomed images of trajectories with

temperature and electron density profiles are also added.

The amount of absorbed energy is 83.1 %. It turns out that the energy is absorbed

exclusively via bremsstrahlung as the amount of energy absorbed via resonant absorption

is 15 orders of magnitude smaller. This confirms the results in [21], although no proper

comparison is possible as the hydrodynamic simulation being processed is different and

in this work no time evolution of the system is examined.

Figure 7.5: Driving laser with angle of incidence 30◦. In the top left and top right
images are the trajectories with the electron density ne as background. In the bottom
left image the absorbed energy is displayed and in the bottom right image the electron

temperature Te is used as background for the trajectories

To investigate the relevance of resonant absorption, a set of lasers with various angles

of incidence has been simulated. To demonstrate the capability of the implemented

algorithm to simulate multiple lasers at once, this has been done in a single simulation.

The trajectories have been once more post processed with resonant absorption and

bremsstrahlung models. The best results were obtained for small angles, namely angles

of incidence θ1 = 1◦, θ2 = 2◦, θ3 = 3◦ and θ4 = 5◦. This is shown in Fig. 7.6, where the

absorbed energy and a sample of trajectories of each laser is presented.

The absorbed energies and the amount absorbed via each mechanism are shown in

Tab. 7.2. Most of the energy, 96.5 %, has been absorbed for angle of incidence 3 %, in



Chapter 7 Simulations of radiation propagation 32

Figure 7.6: Absorption of rays with angles of incidence, from bottom to top: θ1 = 1◦,
θ2 = 2◦, θ3 = 3◦ and θ4 = 5◦. In the left panel is shown the zoom of the area of

resonant absorption and in the right panel the whole trajectories are shown.

this case 27.3 % of initial energy has been absorbed via resonance. It is expected that

resonant absorption is relevant for small angles of incidence [21], but it is also important

to point out that for even smaller angles, the resonant absorption decreases rapidly as

the parameter q in equation (3.15) approaches zero.

θ [◦] 1 2 3 5

eb [%] 79.5 71.3 69.2 79.5

er [%] 9.8 23.6 27.3 10.9

total e [%] 89.3 94.9 96.5 90.4

Table 7.2: Fraction of energy absorbed via bremmstrahlung eb, resonance er and the
total energy absorbed e for angles of incidence θ

7.5 X-ray gain simulations in laser generated plasma

In the previous section, the ray tracing algorithm has been used to find the trajectories

of rays obtained by decomposing the driving laser in a plasma generation simulation.

The capability of the same algorithm to simulate x-ray amplification is demonstrated.

This is performed over the results of 1D simulation extended to 2D the same way as

in previous sections. The only difference is the width of the target, which is 1 mm in
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this case. The cell counts remain unchanged. An X-ray laser of wavelength 25.5 nm

propagation is simulated in direction parallel or almost parallel to the surface of the

target.

First, a laser beginning at a line segment given by points (10, -1) µm and (140, -1) µm

in direction exactly parallel to the target surface is simulated. The initial line segment is

chosen to cover the area of the maximal gain coefficient. The simulation is performed for

10000 rays. This is done to check the implementation and to obtain a reference result.

In this case, no refraction effect can even happen, because the rays never encounter a

cell with different state variables as the previous. The straight trajectories are depicted

in Fig. 7.7.

In this case the amount of energy gained by the laser Eg can be in theory analytically

evaluated using the equation (3.17) and the width of the target for each of the rays, but

this is exactly what the post processing algorithm does in case of straight trajectories

parallel to the target surface. An interesting value is the total amount of energy gained.

In this case the initial energy of the laser is 1 and the energy gained is 16.1 in arbitrary

units. Over the width of 1 mm, this is equal to mean gain coefficient of 28.4 cm−3 which

agrees with the used gain profile.

Figure 7.7: Energy gained and trajectories of the the x-ray laser propagating parallel
to the target

Next, a very similar simulation is performed, now assuming a small shift in the initial

direction. The x-ray laser is skewed towards the target by 5 mrad. The angle value is
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taken based on the experiments [4], where a refraction shift of this order is expected.

The resulting trajectories and gained energy are shown in Fig. 7.8.

Although by looking at the graph, the results seem to vary slightly, the total energy

gained is the same as in the case of the rays propagating exactly parallel to the surface

of the target. It is important to keep in mind that very different scales are used on

the axes parallel and perpendicular to the target surface, when interpreting the figure.

The apparent refraction of the rays in the area of higher electron density is very small.

In this simplistic case, no significant role of diffraction on energy gain values has been

identified, but the ability to simulate refraction effects has been demonstrated. As stated

in [19], for diffraction to play a significant role, the width of the target would have to

be in order of mm. This explains the negligible effect of refraction and the results are

in good agreement with [19].

Figure 7.8: Energy gained and trajectories of the x-ray laser propagating under a
small angle towards the target



Chapter 8

Conclusion

An effort to generalize the previous simulations of soft X-ray laser amplified in conven-

tional laser generated plasma was described in this work.

A theoretical framework was established and basic assumptions were stated. A gen-

eral approach to plasma and radiation interaction was taken to enable both the driving

laser and seeding pulse simulations. Previously developed 3-level model used to describe

X-ray amplification in laser generated plasma was generalized to M -level system. Dif-

ferences between the previous and current approach ware pointed out and the influence

on resulting gain coefficient profile was assessed.

The domain discretization techniques ware summarized and a method for gradient

estimation was described to enable the tracing of laser rays in discrete domains of relevant

hydrodynamic simulations.

Finally, a ray tracing algorithm for general meshes with energy exchange estimation

was implemented. With this algorithm the results of 1D simulation extended to 2D

by assuming a symmetry was post processed. Both, the capability to model radiation

energy absorption and radiation energy amplification ware demonstrated. The results

of the simulations ware compared with similar works and analytical predictions.
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