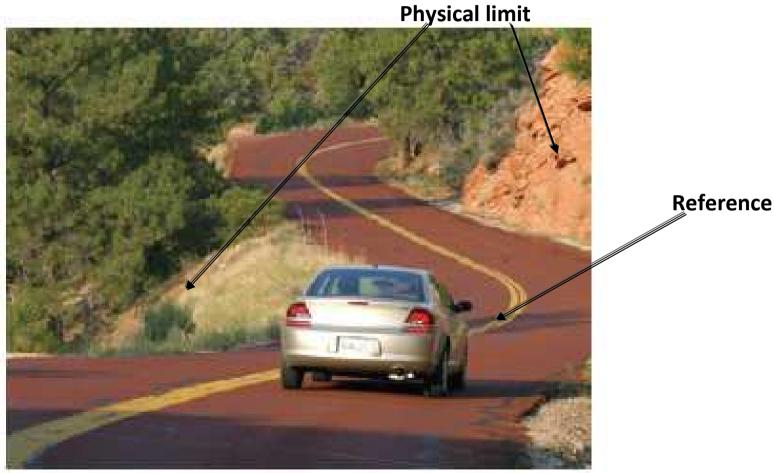


Disruption prediction and avoidance by plasma state monitoring

O. Kudlacek, T. C. Blanken, F. Felici, P. Piovesan, C. Piron, O. Sauter

Plasma state estimation



- RT knowledge of plasma state essential for control & disruption avoidance
 - Present estimation: complicated diagnostics
 - Disruption avoidance: algorithms trained on huge data set
 - Future: limited set of simple diagnostics, no disruption allowed
 - Non-measurable quantities become important (i.e. j_{bs} in advanced regime)
 - New approach to state estimation
- Represented by RApid Plasma Transport simulatOR: [1]
 - Combination of simple diagnostics and reduced set of transport equations
 - Estimate of plasma state based on diffusion equation of ψ and T_e
 - Basic inputs: n_e, I_p, NBI, EC power
 - State estimate correction by Kalman filter using T_e , (T_i, β_p)
 - Outputs related to T_e(r) or j(r), sawtooth crash period ...
- Useful improved control, disruption prediction etc...

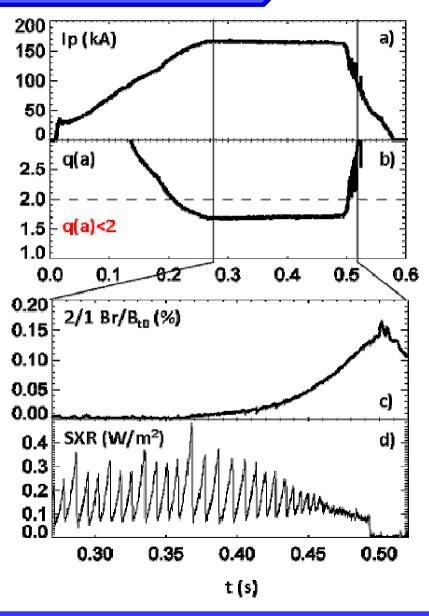
Disruption prediction: physical limits

RT observance of plasma state and comparison with physical limits $(q_{95} vs l_i)$ • β_N , n_G)

Disruption prediction: distance from normal state

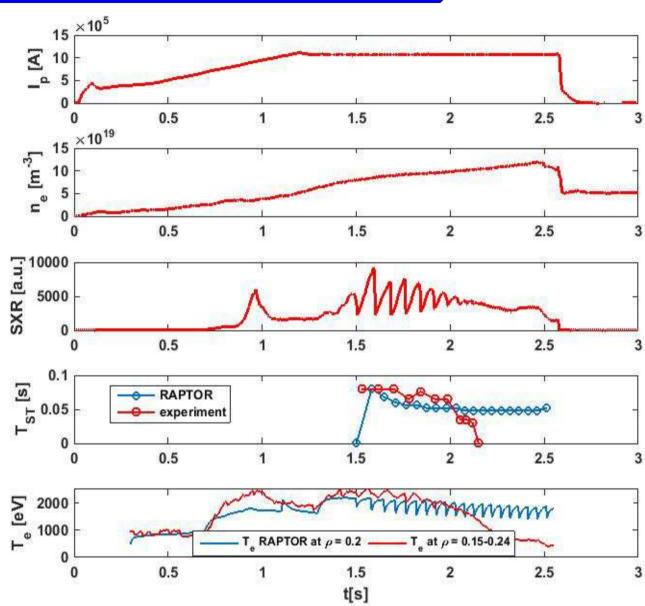
- Fog => "physical limits" not obvious, stay close to reference
- Reference state estimated by RAPTOR
- Normal state perturbed before disruption- no information in RAPTOR
- Find a variable that changes a lot before many disruption types

Sawtooth period before disruption



- Normal ST behavior can be modeled by RAPTOR [2]
- Some disruptions preceded by modified ST behavior
 - RWM, LM disruption
 - density limit, impurity accumulation disruption
- Attempt: measure of "distance from reference" using sawtooth period

ST behavior before disruption- RWM, LM


- RFX-mod: discharges with q_a < 2 controlled actively
- Control off: 2/1 RWM grows (no information in RAPTOR)
- ST smaller and more frequent, later disappear
- The disappearance is followed by disruption
- Prediction: 20-40 ms before on RFX

Density ramp

AUG: density limit case

- NBI on, H-mode
- Similar ST behavior until density reaches certain limit and core radiation increases
- Afterwards, temperature and ST period drop, RAPTOR predicts just low decrease
- Disruption could be predicted on T_e difference

CONSORZIO RF

Conclusions & future plans

- Disruption prediction by plasma state monitoring feasible on RFX
- AUG: promising results, but some RAPTOR improvements needed
- IC heating
- Population of fast ions estimate

Acknowledgements

- All my co-authors for fruitful collaboration
- European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 633053
- International Doctoral College in Fusion Science and Engineering
- MST for financial support

Conclusions & future plans

- Disruption prediction by plasma state monitoring feasible on RFX
- AUG: promising results, but some RAPTOR improvements needed
- IC heating
- Population of fast ions estimate

References

[1] F. Felici at al, NF 2011

[2] C. Piron, PhD thesis, 2015, Universita degli Studi di Padova