Spectroscopic studies of highly ionized plasmas: statistical approach for atomic transitions calculations

Xieyu NA Université Paris Saclay – CEA (France) xieyu.na@cea.fr

FuseNet PhD Event (Prague) - 17 November 2015

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

Plan

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

General context

- Applications in thermonuclear fusion and astrophysics
- Atomic spectroscopy in highly ionized plasmas

2 Numerical illustration and theoretical method

- Examples of computational arrays
- Statistical distribution moments

3 Conclusion

Forthcoming research

Genera ●0	context Numerical illustration and theoretical method Conclusion 000 00 00
	Purpose : study of radiative properties in plasmas
	through spectroscopic methods
	• Better understanding of astrophysical explorations, eg :
	Sun : measurement of iron opacity for stellar interior energy transport
	Cucculations (Cf. Watcher 517, 50-59, 2014)
	• Success on the path toward fusion energy, eg :

MCF : spectroscopic investigations of tungsten (W) as divertor

- (cf : "Tungsten as a plasma facing material in fusion devices" 2003)
- ICF : enhancement of plasma diagnostics and target design
- (cf : "Atomic physics in Inertial Confinement Fusion" 1998)

Why? \rightarrow How?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Bound-bound emission spectrum : $I(E) = \sum_{ab} I_{ab}$ I_{ab} = electron's jump between 2 energy-levels = $N_a \cdot A_{ab} \cdot E_{ab}$ where N_a = upper energy-level population (LTE=Saha-Boltzmann), A_{ab} =dielectronic E1 transition rate, $E_{ab} = |E_a - E_b|$

Detailed level accounting : accurate; inconvenient (highly ionized plasmas)

Atoms : several ionization stages and many open electronic sub-shells.

- spectra contain huge quantity of lines => computation time : long;
- lines gathering in coalescing structures = high resolution : useless.

Figure : Experimental Lanthanum (Z=75) spectrum : transition $3d \rightarrow 4f$ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Idea : regroup spectral lines, (i.e. $a \rightarrow b$) into transition array, (i.e. $C \rightarrow C'$)

Comments on spectrum of $3d^84p \rightarrow 3d^84s$ array :

 Detailed lines ⇒ provide directly global features (eg : central position, FWHM, etc) -> need convolution for identification

• Very good agreement between detailed-convoluted spectrum and statistical one => reliability of statistical calculation

General context	Numerical illustration and theoretical method	Conclusion
00	000	00

Simulation results of statistical arrays by the *Flexible Atomic Code*

Number of levels and transitions between detailed and statistical calculations :

Output FAC	Lev-D	Trans-D	Lev-S	Trans-S
Account	61	359	9	6

Figure : Transition array in Krypton (Z=36) plasma : electrostatic interaction dominates over spin-orbit interaction

Figure : Spin-orbit split in Zirconium(Z=40) plasma into 2 sub-arrays : $3d^24p_{1/2} \rightarrow 3d^24s$; $3d^24p_{3/2} \rightarrow 3d^24s$.

General context	Numerical illustration and theoretical method	Conclusion
00	000	00
THE REPORT OF A 1991	En la constante de la constante	

I heoretical model to build up transition arrays

Statistical configuration average procedure

• Theory of transition array : consider a line spectrum as a distribution, characterized by a set of distribution moments :

$$\mu_n(C - C') = \sum_{mm'} \frac{(< m' \mid H \mid m' > - < m \mid H \mid m >)^n \cdot w_{mm'}}{W}$$
(1)

- where the sum runs over all states *m*, *m*' of configurations *C*, *C*' respectively;
- m m' E1-transition strength : $w_{mm'} = \langle m \mid D \mid m' \rangle^2$, the whole array transition strength : $W = \sum_{mm'} w_{mm'}$.
- Then, the spectrum is directly represented by a Gaussian curve : n=1 : average energy; n=2 : FWHM.

Objective : To access global features directly, dispensing with detailed accounting

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Self-critical summary

Regarding to the Flexible Atomic Code :

- Take knowledge of numerous option choices -> edit input files
- Use output data -> write post-processor

but, what's inside the script?

Work forward

- Gain insight into the *theory of transition array* $(\langle m|H|m \rangle$ calculations in the 1st and 2nd quantization formalisms)
- Implement further statistical options in the Flexible Atomic Code
- Compare spectra from statistical simulations to experimental ones

Numerical illustration and theoretical method

Thanks for your attention !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?