

Nov. 16th 2015 Faculty of Nuclear Sciences and Physical Engineering, CTU Prague

Interaction between neutral beam fast particles and plasma in fusion experiments

Pietro Vincenzi

Consorzio RFX, Padova, Italy Università degli Studi di Padova, Italy

FuseNet PhD Event 2015

Outline

Introduction

Int	roduction
NE	I physics
NE	I history and future
NE	I modelling
_	
NE	I-plasma interaction at LHD

Neutral Beam Injection (NBI)

NBI-plasma interaction physics

NBI-plasma interaction physics

St

- neutral particles
- fast ions
- slowing down fast ions
- background neutrals

Beam absorption

PLASMA

Neutral beam generation

Beam of fast neutral particles

Neutral beam ionization

Fast ion slowing down

NBI-plasma interaction physics

St

- neutral particles
- fast ions
- slowing down fast ions
- background neutrals

Fast particle losses

PLASMA

Scrape off layer losses

First orbit losses

CX losses

Orbit losses

Shine-through losses

NBI-plasma interaction physics

NBI history and future

Introduction
NBI physics
NBI history and future
NBI modelling

NBI history

timeline

Early 1970s

First proof of NBI heating principle H. Eubank et al., IAEA (1978)

ITER experiment construction, including

H. Eubank et al., PRL 43 (1979) 4

1982 Discovery of high confinement mode with NBI Wagner et al., PRL 49 (1982) 1408

1994 - 1998 D-T experiments at TFTR and JET with dominant NBI heating and high P_{fus} Hawryluk et al. PRL 72 (1994) 3530 Strachan et al. PRL 72 (1994) 3526 Keilhacker et al., Nucl. Fusion 39 (1999) 209 Hawryluk et al., Rev. Mod. Phys. 70 (1998) 553

V. Antoni et al., Rev. Sci. Instrum. 85 (2014)

H. Eubank, R. Goldston, V. Arunasalam, M. Bitter, K. Bol, D. Boyd, (a) N. Bretz, J.-P. Bussac, (b) S. Cohen, P. Colestock, S. Davis, D. Dimock, H. Dylla, P. Efthimion, L. Grisham, R. Hawryluk, K. Hill, E. Hinnov, J. Hosea, H. Hsuan, D. Johnson, G. Martin, S. Medley, E. Meservey, N. Sauthoff, G. Schilling, J. Schivell, G. Schmidt, F. Stauffer, (a) L. Stewart, (c) W. Stodiek, R. Stooksberry,^(d) J. Strachan, S. Suckewer, H. Takahashi, G. Tait, (4) M. Ulrickson, S. von Goeler, and M. Yamada Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544 and C. Tsai, W. Stirling, W. Dagenhart, W. Gardner, M. Menon, and H. Haselton Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 1 March 1979) Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas, M. Huang, (a) F. Karger, M. Keilhacker, O. Klüber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Müller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr, F. Schneider, G. Siller, E. Speth, A. Stäbler, K. H. Steuer, G. Venus, O. Vollmer, and Z. Yü(4)

Neutral-Beam - Heating Results from the Princeton Large Torus

Max-Planck Institut für Plasmaphysik, EURATOM Association, D-8046 Garching, München, Germany (Received 6 August 1982; revised manuscript received 1 October 1982)

VOLUME 72, NUMBER 22

30 MAY 199

PHYSICAL REVIEW LETTERS Fusion Power Production from TFTR Plasmas Fueled with Deuterium and Tritium

J. D. Strachan,¹ H. Adler,¹ P. Alling,¹ C. Ancher,¹ H. Anderson,¹ J. L. Anderson,² D. Ashcroft,¹ Cris W Barnes,² G. Barnes,¹ S. Batha,³ M. G. Bell,¹ R. Bell,¹ M. Bitter,¹ W. Blanchard,¹ N. L. Bretz,¹ R. Budny,¹ C. E. Bush,⁴ R. Camp,¹ M. Caorlin,¹ S. Cauffman,¹ Z. Chang,⁵ C. Z. Cheng,¹ J. Collins,¹ G.

REVIEW OF SCIENTIFIC INSTRUMENTS 85, 02B128 (2014)

Physics design of the injector source for ITER neutral beam injector (invited)^{a)} the highest energy NBI (1MeV) ever built

V. Antoni,¹ P. Agostinetti,¹ D. Aprile,¹ M. Cavenago,² G. Chitarin,¹ N. Fonnesu,¹ N. Marconato,¹ N. Pilan,¹ E. Sartori,¹ G. Serianni,^{1,b)} and P. Veltri¹ ¹Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, c.so Stati Uniti 4, 35127 Padova, Italy ²INFN-LNL, viale dell'Università n. 2, 35020 Legnaro, Italy

(Presented 10 September 2013; received 21 September 2013; accepted 2 December 2013; published online 7 January 2014)

future

2010s

NBI is planned to be used on EU DEMO demonstrative reactor T. Franke et al., "On the present status of the EU DEMO H&CD", IEEE Symposium on Fusion Engineering (SOFE 2015), Austin, TX

		Present day	ITER/DEMO
NBI technology	Energy	Low-middle (40-200 up to 500 keV - JT60SA)	High 800-1000 keV
	Power	Tens MW	Tens MW
	Heating source	\checkmark	\checkmark
	Driven current source	\checkmark	\checkmark
NBI physics	Particle source	\checkmark	Negligible
	Torque source	\checkmark	Negligible
	Fusion reactions (beam-plasma) source	\checkmark	Relatively low

NBI modelling

Introduction
NBI physics
NBI history and future
NBI modelling
NBI-plasma interaction at LHD

From low to high NBI modelling resolution

Numerical codes calculate NBI ionization and fast ions slowing down **Output**:

- Fast ion birth profile
- Power transferred to plasma (ions or electrons)
- NBI losses (e.g. shine thorugh)
- Driven current
- Momentum transferred to plasma
- ..

NBI models

fast codes using analytical solutions of fast ion Fokker-Planck equation, well suitable for sensitivity studies. **Simplified approach**

Simplified approach

NBI simulations

Stand alone: NBI acting on "frozen" plasma **Integrated**: NBI interacting with evolving plasma, coupled to e.g. transport codes

Long simulation time, but detailed

VS

NBI-plasma interaction at LHD

Intro	oduction		
NBI	physics		
NBI	history and future		
NBI	modelling		
NBI	plasma interaction a	at LHD	

LHD experiment

LHD¹ is the world's largest heliotron type device in operation. Thanks to superconducting coils it is able to study current-free plasmas.

LHD parameters				
Major radius	3.9 m			
Minor plasma radius	0.5 – 0.65 m			
Magnetic field	3 T at R=3.9 m			
Plasma volume	30 m ³			
ECRH	10 MW			
ICRH	3 MW			
NBI	15-23 MW			

NBI system at LHD

5 NBI systems:

- 2 perpendicular NBIs (40-50 keV, up to 12MW)
- 3 tangential (co- and counter-current) NBIs (180-190 keV, up to 16MW)

PERSON

Similarity H/He experiments at LHD

- 4 similar LHD shots varying the plasma composition from H to He majority
- Dominant NBI heating
- Similar n_e and T_e, while higher T_i with He majority

What is the role of NBI heating in the observed T_i increase?

Upgraded **FIT3D¹** NBI-plasma interaction code, stand-alone, steady state approx. **Aim**: to understand the role of heat deposition by NBI in different plasmas

Although some differences in fast ion confinement are present, the final NBI power deposition is unaffected by the plasma composition in these cases². Different causes for improved ion confinment? Ongoing studies for isotope effect: from H to D NBI and plasma in LHD

¹P. Vincenzi et al., 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 2015), P1.150 ²P. Vincenzi et al., 25th International Toki Conference (Toki-city, Gifu, Japan, 2015), P1.86

Questions?

Thank you for the attention

Do you have any question? Curiosity?