Poloidal asymmetries in SOL turbulence on ASDEX Upgrade in different magnetic configurations

Valentina Nikolaeva^{1,2,3}, P. Manz^{2,3}, L. Guimarais¹, G. D. Conway², R. Fischer², M. E. Manso¹, T.T. Ribeiro², F. Ryter², C. Silva¹, U.Stroth^{2,3}, E. Wolfrum² and the ASDEX Upgrade team

¹ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal
² Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany
³ Physik-Department E28, Technische Universität München, 85748 Garching, Germany

Outline

"Begin at the beginning," the King said, very gravely, "and go on till you come to the end: then stop." Lewis Carroll, Alice in Wonderland

- Motivation
- Experimental set up
- Methodology
- Study of poloidal asymmetries of SOL/edge turbulence

Results:

HFS/LFS SOL/edge density fluctuations in L-mode

- \checkmark Asymmetry $\delta n/n$ in USN, DN, LSN
- \checkmark Comparison with GEMR simulations
- \checkmark Radial profiles $\delta n/n$
- Summary

"Due to the high success of fusion ...

that takes place in space." Ellen Zweibel

Motivation

- Plasma turbulence greatly enhances energy and particles transport across magnetic field lines - degradation of plasma confinement
- Investigation of turbulence is relevant to improve reliability of a fusion reactor
- SOL/edge turbulence properties are not poloidally symmetric (diamagnetic drift, ExB drift, Shafranov shift, different connection length, etc)

SOL instabilities

B Vp Vp Vp

Interchage: driven by ∇p in bad curvature region

CWI (conducting wall instability): negative sheath resistivity, driven by Te

P. Manz et al., Phys. Plasmas 22, 2015 Y. Sarazin et al., J. Nucl. Mater., 2003 H. L. Berk et al., Nucl. Fusion, 1993

ASDEX Upgrade tokamak

(Axially Symmetric Divertor EXperiment)

•major radius (<i>R</i>)	1.65 m
•minor radius (a)	0.5 m
•max plasma current (I_p)	1.6 mA
•max toroidal magnetic field (B_t)	3.1 T
•max pulse duration •max electron density (n _e)	10 s 10 ²⁰ m ⁻³

HFS&LFS FMCW reflectometer

validation of the method is done by comparison with overlapping data obtained by hopping reflectometer

relation between phase $\varphi(t)$ and the density fluctuation level $\delta n_e/n_e$ determined from (O mode):

1D model by C.Fanack:
Large wavenumbers
$$2k_a < k_f < 2k_0$$
: $k_A = 0.63 k_0^{2/3} L^{-1/3}$ $\frac{\delta n_0}{n_{cr}} = \frac{\Delta \phi_{max}}{\pi \sqrt{2}} \left(\frac{k_f / k_0}{L / \lambda_0}\right)^{1/2}$ $L_n = \frac{n_c}{\nabla n_e}$

Turbulence asymmetries

Turbulence asymmetries

spectrograms of signal phase

IPP

DN HFS/LFS δ n/n fluctuations

DN SOL – HFS becoming isolated from LFS

PD

beginning of the discharge

"Curiouser and curiouser!" Cried Alice (she was so much surprised, that for the moment she quite forgot how to speak good English)." Lewis Carroll, Alice in Wonderland

USN SOL – HFS $\delta n/n > LFS \delta n/n$ unexpected!

EAST USN upper divertor HFS jsat > LFS jsat , S.C. Liu et al. Phys. Plasmas 19, 042505 (2010)

FuseNet PhD Event 2015

end of the discharge, RMP

USN SOL – HFS $\delta n/n > LFS \delta n/n$ unexpected!

EAST USN upper divertor HFS jsat > LFS jsat , S.C. Liu et al. Phys. Plasmas 19, 042505 (2010)

FuseNet PhD Event 2015

Experimental results and GEMR simulations show:

• Effect of magnetic configuration on poloidal asymmetries of $\delta n/n$ is mainly pronounced in SOL

- $\delta n/n$ SOL on LFS is higher for LSN than USN and on the HFS the other way around
- the strongest HFS/LFS asymmetry of $\delta n/n$ in DN SOL, also seen with GEMR earlier
- (T. T. Ribeiro et al., Plasma Phys. Control. Fusion 50, 008)
- DN is similar to LSN on LFS and to USN on HFS
- In USN HFS SOL $\delta n/n$ exceeds those of the LFS

HFS/LFS radial profile of density fluctuations

FuseNet PhD Event 2015

Conclusions

- Turbulence poloidal asymmetries in USN, DN, LSN
 - The strongest HFS/LFS asymmetry of fluctuations in DN SOL, was also seen with the GEMR code, HFS being isolated from LFS
 - Effect of magnetic configuration (USN, DN, LSN) on the poloidal asymmetries of density fluctuations is more pronounced outside the separatrix
 - Surprisingly, in USN configurations, HFS SOL turbulence increases above the LFS level. This behavior is currently under investigation and might be induced by conducting wall instability CWI driven by different temperature gradients at these locations that are configuration dependent

HFS/LFS radial profiles of density fluctuations

 Drop of density fluctuations inside the separatrix both at LFS and HFS is observed in the region of strong radial electric field Er shear for all configurations – USN, DN, LSN

Thank you for your attention!

Night. Sitting in the office. The tokamak is nearby. My reflectometer is broken, but I believe in better life. The data looks a bit like nonsense, and difficult to interpret. I like it, waiting for the fusion to be achieved in 20 years.