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Outline

“Begin at the beginning," the King said, very gravely, "and go on till you come to the end:
then stop.” Lewis Carroll, Alice in Wonderland

* Motivation
* Experimental set up
* Methodology

* Study of poloidal asymmetries of SOL/edge turbulence
Results:

HFS/LFS SOL/edge density fluctuations in L-mode

- Asymmetry on/n in USN, DN, LSN

~ Comparison with GEMR simulations
“ Radial profiles on/n

* Summary
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Why do we investigate turbulence?

“Due to the high success of fusion ...

that takes place in space.” Ellen Zweibel

Motivation

> Plasma turbulence greatly enhances energy and particles transport across
magnetic field lines - degradation of plasma confinement

> Investigation of turbulence is relevant to improve reliability of a fusion reactor

> SOL/edge turbulence properties are not poloidally symmetric
(diamagnetic drift, ExB drift, Shafranov shift, different connection length, etc)
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SOL instabilities
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Interchage: CWI (conducting wall instability):

driven by Vp in bad curvature region negative sheath resistivity,

driven by Te
P. Manz et al., Phys. Plasmas 22, 2015
Y. Sarazin et al., J. Nucl. Mater., 2003
H. L. Berk et al., Nucl. Fusion, 1993
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ASDEX Upgrade tokamak

(Axially Symmetric Divertor EXperiment)

*major radius (R) 1.65 m
*minor radius (a) 0.5m
max plasma current (Ip) 1.6 mA
-max toroidal magnetic field (B) 3.1 T
*max pulse duration 10 s
max electron density (n ) 10*° m?
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HFS&LFS FMCW reflectometer

Density [x10¥m3]
V 3.0-7.0
Q 15-3.0
Ka 0.8-1.5
K 03-0.38

LFS 2=0.14 [m]
HFS Z=0.07 [m]

Vacuum

Fluctuation Data:
8s @2MHz
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Methodology of data analysis

O-Mode: E__ | B,: solely depend on n_

Reference pin
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Detector A Hopping reflectometer: A(t)cos(p(t)) & A(t)sin(p(t)) ~ @(t)

FMCW reflectometer: A(t)cos[2TtF, + @(t)] to get @(t) — Hilbert transform

validation of the method is done by comparison with overlapping data obtained by hopping reflectometer

relation between phase @(t) and the density fluctuation level on /n_ determined from (O mode):

1D model by C.Fanack:
Large wavenumbers 2k < k. < 2K,

kf/ko 1/2 n

L/A,

k ,=0.63 K23 ~V/3 én, _ A¢mg
n, 2
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Turbulence asymmetries
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Turbulence asymmetries
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spectrograms of signal phase
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LSN HFS/LFS 6n/n fluctuations
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DN HFS/LFS én/n fluctuations
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DN SOL — HFS becoming isolated from LFS
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USN HFS/LFS én/n fluctuations

“Curiouser and curiouser!” Cried Alice (she was so much surprised,

beginning of the discharge that for the moment she quite forgot how to speak good English).”
Lewis Carroll, Alice in Wonderland
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USN SOL - HFS &n/n > LFS &n/n unexpected!

EAST USN upper divertor HFS jsat > LFS jsat ,
S.C. Liu et al. Phys. Plasmas 19, 042505 (2010)
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USN HFS/LFS én/n fluctuations

end of the discharge, RMP
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USN SOL - HFS én/In > LFS én/n unexpected!

EAST USN upper divertor HFS jsat > LFS jsat ,
S.C. Liu et al. Phys. Plasmas 19, 042505 (2010)
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Comparison with GEMR code

: GEMR simulations
40 experimental results | USN edge SOL
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Experimental results and GEMR simulations show: Ppol
* Effect of magnetic configuration on poloidal asymmetries of dn/n is mainly pronounced in SOL
* dn/n SOL on LFS is higher for LSN than USN and on the HFS the other way around

* the strongest HFS/LFS asymmetry of on/n in DN SOL, also seen with GEMR earlier
(T. T. Ribeiro et al., Plasma Phys. Control. Fusion 50, 008)

* DN is similar to LSN on LFS and to USN on HFS
* In USN HFS SOL dn/n exceeds those of the LFS
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HFS/LFS radial profile of density fluctuations
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Conclusions

“ Turbulence poloidal asymmetries in USN, DN, LSN

* The strongest HFS/LFS asymmetry of fluctuations in DN SOL, was also seen
with the GEMR code, HFS being isolated from LFS

 Effect of magnetic configuration (USN, DN, LSN) on the poloidal asymmetries
of density fluctuations is more pronounced outside the separatrix

 Surprisingly, in USN configurations, HFS SOL turbulence increases above the
LFS level. This behavior is currently under investigation and might be induced
by conducting wall instability CWI driven by different temperature gradients at
these locations that are configuration dependent

“ HFSILFS radial profiles of density fluctuations
* Drop of density fluctuations inside the separatrix both at LFS and HFS is

observed in the region of strong radial electric field Er shear for all
configurations — USN, DN, LSN
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Thank you for your attention!

Night. Sitting in the office. The tokamak is nearby.

My reflectometer is broken, but | believe in better life.

The data looks a bit like nonsense, and difficult to interpret.
| like it, waiting for the fusion to be achieved in 20 years.
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