

## EXPERIMENTAL STUDY OF RADIAL TURBULENCE WITH THE ULTRA-FAST-SWEPT REFLECTOMETER AT ASDEX UPGRADE

A. Medvedeva<sup>1;2;3;4</sup>, C. Bottereau<sup>2</sup>, F. Clairet<sup>2</sup>, G.D. Conway<sup>1</sup>, S. Heuraux<sup>4</sup>, D. Molina<sup>2</sup>, A. Silva<sup>5</sup>, U. Stroth<sup>1;3</sup> and ASDEX Upgrade Team

<sup>1</sup>Max-Planck-Institut für Plasmaphysik, Garching, Germany

<sup>3</sup>Technische Universität München, Garching, Germany

<sup>2</sup>CEA, IRFM, St-Paul-Lez-Durance, France



## FuseNet PhD Event 2015





# **EXPERIMENTAL STUDY OF RADIAL TURBULENCE** WITH THE ULTRA-FAST-SWEPT REFLECTOMETER AT ASDEX UPGRADE

- ASDEX Upgrade tokamak
- Reflectometry basics
- Ultra-Fast-Swept Reflectometer installation
- Electron density turbulent fluctuations (methods)
  - Experimental results







IPP, Garching, Germany

| Material of the first wall         | Tungsten                                          |
|------------------------------------|---------------------------------------------------|
| Maximum magnetic field             | 3.1 T                                             |
| Plasma current                     | 0.4 MA - 1.6 MA                                   |
| Pulse duration                     | < 10 s                                            |
| Plasma heating:                    | up to 27 MW                                       |
| Ohmical heating                    | 1 MW                                              |
| Neutral beam injection heating     | 20 MW (with $^{2}H = D$ )                         |
| Ion-Cyclotron heating              | 6 MW (30 MHz - 120 MHz)                           |
| Electron-Cyclotron heating         | 2 x 2 MW (105/140 GHz)                            |
| Major plasma radius R <sub>o</sub> | 1.65 m                                            |
| Minor horizontal plasma radius a   | 0.5 m                                             |
| Minor vertical plasma radius b     | 0.8 m                                             |
| Plasma types                       | D, H, He                                          |
| Plasma density                     | 2 x 10 <sup>20</sup> particles per m <sup>3</sup> |
| Plasma temperature                 | 100 million degrees                               |



#### RADAR TECHNIQUE: PLASMA REFLECTOMETRY





Plane  $\rightarrow$  Amplitude jump A(t)

Signal phase  $\Phi \rightarrow$  distance



#### RADAR TECHNIQUE: PLASMA REFLECTOMETRY



Plane  $\rightarrow$  Amplitude jump A(t) Signal phase  $\Phi \rightarrow$  distance Plasma  $\rightarrow$  Amplitude jump A(t)

Bigger frequency  $\rightarrow$  Reflection at deeper layer

Signal phase  $\Phi \rightarrow$  density and distance

$$\Phi = \frac{4\pi F}{c} \int_{Rref}^{Rcutoff} N[n_e(r), B(r), F] dr - \frac{\pi}{2} \qquad N_X^2 = 0, F_{cut-off}(n_e, r) = \frac{\pm F_{ce} + \sqrt{F_{ce}^2 + 4 \cdot F_{pe}^2}}{2}$$

A.Medvedeva Experimental study of radial turbulence with the ultra-fast-swept reflectometer at ASDEX Upgrade

Cea



- <u>Swept frequency</u> reflectometry: scan from the edge to the core
- Heterodyne IQ detection : independent
  amplitude and phase with high S/N ratio

 $S = A \cdot e^{i\Phi(\omega)}$ 

 $\Phi = \langle \Phi \rangle + \delta \Phi,$  $\delta \Phi = f(\delta n)$ 

- $A(\omega) \rightarrow$  initialization (plasma edge)
- $\Phi(\omega) \rightarrow$  electron density profile
- δΦ(ω) → δn turbulent fluctuations,
  ω and k-spectra





Plasma  $\rightarrow$  Amplitude jump A(t)

Bigger frequency  $\rightarrow$  Reflection at deeper layer

Signal phase  $\Phi \rightarrow$  density and distance

$$\Phi = \frac{4\pi F}{c} \int_{Rref}^{Rcutoff} N[n_e(r), B(r), F] dr - \frac{\pi}{2} \qquad N_X^2 = 0, F_{cut-off}(n_e, r) = \frac{\pm F_{ce} + \sqrt{F_{ce}^2 + 4 \cdot F_{pe}^2}}{2}$$

A.Medvedeva Experimental study of radial turbulence with the ultra-fast-swept reflectometer at ASDEX Upgrade



#### ULTRA-FAST SWEPT REFLECTOMETER INSTALLATION ON ASDEX UPGRADE



Developed at CEA, Cadarache, transferred to AUG in 2013





#### Specifications

- V & W frequency bands, 50.5-105 GHz 2013:

– sweep time 2  $\mu$ s, spectra up to 200 kHz

- up to 12.000 profiles per discharge2015:

– sweep time 1  $\mu$ s, spectra up to 400 kHz

- up to 200.000 profiles per discharge









#### ULTRA-FAST SWEPT REFLECTOMETER : IMPROVING SWEEP TIME







sweep time 1  $\mu$ s < turbulence time scale



### DENSITY FLUCTUATIONS AND K-SPECTRA RECONSTRUCTION: CLOSED-LOOP METHOD





A.Medvedeva Experimental study of radial turbulence with the ultra-fast-swept reflectometer at ASDEX Upgrade





- 2 MW Electron Cyclotron Resonance Heating → H-mode
- Edge pedestal forms (transport barrier)
- Edge plasma density and temperature gradients steepens

Density profiles @2.13 and 2.145s





A.Medvedeva Experimental study of radial turbulence with the ultra-fast-swept reflectometer at ASDEX Upgrade







- After L-H transition large scale density fluctuations are suppressed in the pedestal region
- Turbulence level falls towards core



### DENSITY FLUCTUATIONS AND K-SPECTRA DURING L-H TRANSITION



- UFSR allows to reconstruct density fluctuation profile from edge to plasma core
- Integrate  $k_r$  spectra (2 cm<sup>-1</sup> <  $k_r$  < 20 cm-1)  $\rightarrow \delta n/n$
- 50 profiles for one density fluctuation profile (total 150 μs average)



 $\delta$ n/n falls in pedestal region  $\rightarrow$  transport barrier





- Diagnostic transferred from Tore Supra, CEA to ASDEX Upgrade and successfully commissioned
- First studies of the electron density profile dynamics, δn/n, k<sub>r</sub> and ω spectra performed in 2014-2015
- Large scale density fluctuations decrease in pedestal region in H-mode
- Major diagnostic upgrade: improved resolution and better statistics
  - Sweep time:  $2\mu s \rightarrow 1\mu s$
  - − Profiles 12 000 → 200 000
- Outlook: experiments and data analysis for radial propagation, turbulence during ELMs and L-H transition study



## Thank you for your attention!



radius (m)





For 2D turbulence energy cascades both up and down the wavenumber k range: Kolmogorov/Kraichnan-type power spectrum



Forward transfer of enstrophy, and inverse transfer of energy in a 2D turbulence simulation

In reality different spectral slopes may be seen due to the anisotropy, modes coupling, Landau damping etc.







The cut-off position depends on  $n_e$  and B. By sweeping the frequency (50-105 GHz), the probing position changes from the SOL to the core.

